We consider universal computability of the LCTRS with only rule scheme Calc: Signature: eval :: Int -> Int -> o Rules: eval(x, y) -> eval(x - 1, z) | x >= 0 /\ z = z eval(x, y) -> eval(x, y - 1) | y >= 0 The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) eval#(x, y) => eval#(x - 1, z) | x >= 0 /\ z = z (2) eval#(x, y) => eval#(x, y - 1) | y >= 0 ***** We apply the Theory Arguments Processor on D1 = (P1, R UNION R_?, i, c). We use the following theory arguments function: eval# : [1] Processor output: { D2 = (P2, R UNION R_?, i, c) ; D3 = (P3, R UNION R_?, i, c) }, where: P2. (1) eval#(x, y) => eval#(x - 1, z) | x >= 0 /\ z = z (2) eval#(x, y) => eval#(x, y - 1) | y >= 0 /\ x = x P3. (1) eval#(x, y) => eval#(x, y - 1) | y >= 0 ***** We apply the Integer Function Processor on D2 = (P2, R UNION R_?, i, c). We use the following integer mapping: J(eval#) = arg_1 We thus have: (1) x >= 0 /\ z = z |= x > x - 1 (and x >= 0) (2) y >= 0 /\ x = x |= x >= x We may remove the strictly oriented DPs, which yields: Processor output: { D4 = (P4, R UNION R_?, i, c) }, where: P4. (1) eval#(x, y) => eval#(x, y - 1) | y >= 0 /\ x = x ***** We apply the Integer Function Processor on D3 = (P3, R UNION R_?, i, c). We use the following integer mapping: J(eval#) = arg_2 + 1 We thus have: (1) y >= 0 |= y + 1 > y - 1 + 1 (and y + 1 >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Integer Function Processor on D4 = (P4, R UNION R_?, i, c). We use the following integer mapping: J(eval#) = arg_2 We thus have: (1) y >= 0 /\ x = x |= y > y - 1 (and y >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.