We consider universal computability of the LCTRS with only rule scheme Calc: Signature: eval_1 :: Int -> Int -> Int -> o eval_2 :: Int -> Int -> Int -> o Rules: eval_1(x, y, z) -> eval_2(x, y, z) | x > y eval_2(x, y, z) -> eval_1(x, y + 1, z) | x > z eval_2(x, y, z) -> eval_1(x, y, z + 1) | x > z eval_2(x, y, z) -> eval_1(x - 1, y, z) | z >= x The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) eval_1#(x, y, z) => eval_2#(x, y, z) | x > y (2) eval_2#(x, y, z) => eval_1#(x, y + 1, z) | x > z (3) eval_2#(x, y, z) => eval_1#(x, y, z + 1) | x > z (4) eval_2#(x, y, z) => eval_1#(x - 1, y, z) | z >= x ***** We apply the Chaining Processor Processor on D1 = (P1, R UNION R_?, i, c). We chain DPs according to the following mapping: eval_2#(x, y, z) => eval_2#(x, y + 1, z) | x > z /\ x > y + 1 is obtained by chaining eval_2#(x, y, z) => eval_1#(x, y + 1, z) | x > z and eval_1#(x', y', z') => eval_2#(x', y', z') | x' > y' eval_2#(x, y, z) => eval_2#(x, y, z + 1) | x > z /\ x > y is obtained by chaining eval_2#(x, y, z) => eval_1#(x, y, z + 1) | x > z and eval_1#(x', y', z') => eval_2#(x', y', z') | x' > y' eval_2#(x, y, z) => eval_2#(x - 1, y, z) | z >= x /\ x - 1 > y is obtained by chaining eval_2#(x, y, z) => eval_1#(x - 1, y, z) | z >= x and eval_1#(x', y', z') => eval_2#(x', y', z') | x' > y' The following DPs were deleted: eval_2#(x, y, z) => eval_1#(x, y + 1, z) | x > z eval_2#(x, y, z) => eval_1#(x, y, z + 1) | x > z eval_2#(x, y, z) => eval_1#(x - 1, y, z) | z >= x eval_1#(x, y, z) => eval_2#(x, y, z) | x > y By chaining, we added 3 DPs and removed 4 DPs. Processor output: { D2 = (P2, R UNION R_?, i, c) }, where: P2. (1) eval_2#(x, y, z) => eval_2#(x, y + 1, z) | x > z /\ x > y + 1 (2) eval_2#(x, y, z) => eval_2#(x, y, z + 1) | x > z /\ x > y (3) eval_2#(x, y, z) => eval_2#(x - 1, y, z) | z >= x /\ x - 1 > y ***** We apply the Graph Processor on D2 = (P2, R UNION R_?, i, c). We compute a graph approximation with the following edges: 1: 1 2 2: 1 2 3 3: 3 There are 2 SCCs. Processor output: { D3 = (P3, R UNION R_?, i, c) ; D4 = (P4, R UNION R_?, i, c) }, where: P3. (1) eval_2#(x, y, z) => eval_2#(x - 1, y, z) | z >= x /\ x - 1 > y P4. (1) eval_2#(x, y, z) => eval_2#(x, y + 1, z) | x > z /\ x > y + 1 (2) eval_2#(x, y, z) => eval_2#(x, y, z + 1) | x > z /\ x > y ***** We apply the Integer Function Processor on D3 = (P3, R UNION R_?, i, c). We use the following integer mapping: J(eval_2#) = arg_1 - 1 - arg_2 - 1 We thus have: (1) z >= x /\ x - 1 > y |= x - 1 - y - 1 > x - 1 - 1 - y - 1 (and x - 1 - y - 1 >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Integer Function Processor on D4 = (P4, R UNION R_?, i, c). We use the following integer mapping: J(eval_2#) = arg_1 - arg_2 - 1 We thus have: (1) x > z /\ x > y + 1 |= x - y - 1 > x - (y + 1) - 1 (and x - y - 1 >= 0) (2) x > z /\ x > y |= x - y - 1 >= x - y - 1 We may remove the strictly oriented DPs, which yields: Processor output: { D5 = (P5, R UNION R_?, i, c) }, where: P5. (1) eval_2#(x, y, z) => eval_2#(x, y, z + 1) | x > z /\ x > y ***** We apply the Integer Function Processor on D5 = (P5, R UNION R_?, i, c). We use the following integer mapping: J(eval_2#) = arg_1 - arg_3 - 1 We thus have: (1) x > z /\ x > y |= x - z - 1 > x - (z + 1) - 1 (and x - z - 1 >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.