We consider universal computability of the LCTRS with only rule scheme Calc: Signature: 0@z :: Int 1@z :: Int Cond_b14 :: Bool -> Int -> Int -> Int -> o b10 :: Int -> Int -> Int -> o b14 :: Int -> Int -> Int -> o b15 :: Int -> Int -> Int -> o Rules: b10(sv14_14, sv23_37, sv24_38) -> b14(sv14_14, sv23_37, sv24_38) Cond_b14(true, sv14_14, sv23_37, sv24_38) -> b15(sv14_14, sv23_37, sv24_38) b14(sv14_14, sv23_37, sv24_38) -> Cond_b14(sv23_37 >= sv14_14 /\ 1@z < sv14_14 /\ 0@z < sv24_38 /\ 1@z < sv23_37, sv14_14, sv23_37, sv24_38) b15(sv14_14, sv23_37, sv24_38) -> b10(sv14_14, sv23_37 - sv14_14, sv24_38 + 1@z) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) b10#(sv14_14, sv23_37, sv24_38) => b14#(sv14_14, sv23_37, sv24_38) (2) Cond_b14#(true, sv14_14, sv23_37, sv24_38) => b15#(sv14_14, sv23_37, sv24_38) (3) b14#(sv14_14, sv23_37, sv24_38) => Cond_b14#(sv23_37 >= sv14_14 /\ 1@z < sv14_14 /\ 0@z < sv24_38 /\ 1@z < sv23_37, sv14_14, sv23_37, sv24_38) (4) b15#(sv14_14, sv23_37, sv24_38) => b10#(sv14_14, sv23_37 - sv14_14, sv24_38 + 1@z) ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, i, c). We compute a graph approximation with the following edges: 1: 3 2: 4 3: 4: 1 As there are no SCCs, this DP problem is removed. Processor output: { }.