We consider universal computability of the LCTRS with only rule scheme Calc: Signature: eval_1 :: Int -> Int -> o eval_2 :: Int -> Int -> o Rules: eval_1(i, j) -> eval_2(i, 0) | i >= 0 eval_2(i, j) -> eval_2(i, j + 1) | j <= i - 1 eval_2(i, j) -> eval_1(i - 1, j) | j > i - 1 The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) eval_1#(i, j) => eval_2#(i, 0) | i >= 0 (2) eval_2#(i, j) => eval_2#(i, j + 1) | j <= i - 1 (3) eval_2#(i, j) => eval_1#(i - 1, j) | j > i - 1 ***** We apply the Chaining Processor Processor on D1 = (P1, R UNION R_?, i, c). We chain DPs according to the following mapping: eval_2#(i, j) => eval_2#(i - 1, 0) | j > i - 1 /\ i - 1 >= 0 is obtained by chaining eval_2#(i, j) => eval_1#(i - 1, j) | j > i - 1 and eval_1#(i', j') => eval_2#(i', 0) | i' >= 0 The following DPs were deleted: eval_2#(i, j) => eval_1#(i - 1, j) | j > i - 1 eval_1#(i, j) => eval_2#(i, 0) | i >= 0 By chaining, we added 1 DPs and removed 2 DPs. Processor output: { D2 = (P2, R UNION R_?, i, c) }, where: P2. (1) eval_2#(i, j) => eval_2#(i, j + 1) | j <= i - 1 (2) eval_2#(i, j) => eval_2#(i - 1, 0) | j > i - 1 /\ i - 1 >= 0 ***** We apply the Integer Function Processor on D2 = (P2, R UNION R_?, i, c). We use the following integer mapping: J(eval_2#) = arg_1 We thus have: (1) j <= i - 1 |= i >= i (2) j > i - 1 /\ i - 1 >= 0 |= i > i - 1 (and i >= 0) We may remove the strictly oriented DPs, which yields: Processor output: { D3 = (P3, R UNION R_?, i, c) }, where: P3. (1) eval_2#(i, j) => eval_2#(i, j + 1) | j <= i - 1 ***** We apply the Integer Function Processor on D3 = (P3, R UNION R_?, i, c). We use the following integer mapping: J(eval_2#) = arg_1 - 1 - arg_2 We thus have: (1) j <= i - 1 |= i - 1 - j > i - 1 - (j + 1) (and i - 1 - j >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.