We consider universal computability of the LCSTRS with only rule scheme Calc: Signature: comp :: (Int -> Int) -> (Int -> Int) -> Int -> Int fact :: Int -> (Int -> Int) -> Int fact1 :: Int -> Int fact2 :: Int -> Int id :: Int -> Int Rules: comp(f, g, x) -> f(g(x)) id(x) -> x fact(n, k) -> k(1) | n <= 0 fact(n, k) -> fact(n - 1, comp(k, [*](n))) | n > 0 fact1(n) -> fact(n, id) fact2(n) -> 1 | n <= 0 fact2(n) -> n * fact2(n - 1) | n > 0 The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, f, c), where: P1. (1) fact#(n, k) => comp#(k, [*](n), fresh1) | n > 0 (2) fact#(n, k) => fact#(n - 1, comp(k, [*](n))) | n > 0 (3) fact1#(n) => id#(fresh1) (4) fact1#(n) => fact#(n, id) (5) fact2#(n) => fact2#(n - 1) | n > 0 ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, f, c). We compute a graph approximation with the following edges: 1: 2: 1 2 3: 4: 1 2 5: 5 There are 2 SCCs. Processor output: { D2 = (P2, R UNION R_?, f, c) ; D3 = (P3, R UNION R_?, f, c) }, where: P2. (1) fact#(n, k) => fact#(n - 1, comp(k, [*](n))) | n > 0 P3. (1) fact2#(n) => fact2#(n - 1) | n > 0 ***** We apply the Integer Function Processor on D2 = (P2, R UNION R_?, f, c). We use the following integer mapping: J(fact#) = arg_1 We thus have: (1) n > 0 |= n > n - 1 (and n >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Integer Function Processor on D3 = (P3, R UNION R_?, f, c). We use the following integer mapping: J(fact2#) = arg_1 We thus have: (1) n > 0 |= n > n - 1 (and n >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.