We consider termination of the STRS with no additional rule schemes: Signature: 0 :: b cons :: b -> c -> c false :: a filter :: (b -> a) -> c -> c filter2 :: a -> (b -> a) -> b -> c -> c int :: b -> b -> c intlist :: c -> c map :: (b -> b) -> c -> c nil :: c s :: b -> b true :: a Rules: intlist(nil) -> nil intlist(cons(X, Y)) -> cons(s(X), intlist(Y)) int(0, 0) -> cons(0, nil) int(0, s(U)) -> cons(0, int(s(0), s(U))) int(s(V), 0) -> nil int(s(W), s(P)) -> intlist(int(W, P)) map(F1, nil) -> nil map(Z1, cons(U1, V1)) -> cons(Z1(U1), map(Z1, V1)) filter(I1, nil) -> nil filter(J1, cons(X2, Y2)) -> filter2(J1(X2), J1, X2, Y2) filter2(true, G2, V2, W2) -> cons(V2, filter(G2, W2)) filter2(false, J2, X3, Y3) -> filter(J2, Y3) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R, i, c), where: P1. (1) intlist#(cons(X, Y)) => intlist#(Y) (2) int#(0, s(U)) => int#(s(0), s(U)) (3) int#(s(W), s(P)) => int#(W, P) (4) int#(s(W), s(P)) => intlist#(int(W, P)) (5) map#(Z1, cons(U1, V1)) => map#(Z1, V1) (6) filter#(J1, cons(X2, Y2)) => filter2#(J1(X2), J1, X2, Y2) (7) filter2#(true, G2, V2, W2) => filter#(G2, W2) (8) filter2#(false, J2, X3, Y3) => filter#(J2, Y3) ***** We apply the Graph Processor on D1 = (P1, R, i, c). We compute a graph approximation with the following edges: 1: 1 2: 3 4 3: 2 3 4 4: 1 5: 5 6: 7 8 7: 6 8: 6 There are 4 SCCs. Processor output: { D2 = (P2, R, i, c) ; D3 = (P3, R, i, c) ; D4 = (P4, R, i, c) ; D5 = (P5, R, i, c) }, where: P2. (1) intlist#(cons(X, Y)) => intlist#(Y) P3. (1) int#(0, s(U)) => int#(s(0), s(U)) (2) int#(s(W), s(P)) => int#(W, P) P4. (1) map#(Z1, cons(U1, V1)) => map#(Z1, V1) P5. (1) filter#(J1, cons(X2, Y2)) => filter2#(J1(X2), J1, X2, Y2) (2) filter2#(true, G2, V2, W2) => filter#(G2, W2) (3) filter2#(false, J2, X3, Y3) => filter#(J2, Y3) ***** We apply the Subterm Criterion Processor on D2 = (P2, R, i, c). We use the following projection function: nu(intlist#) = 1 We thus have: (1) cons(X, Y) |>| Y All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D3 = (P3, R, i, c). We use the following projection function: nu(int#) = 2 We thus have: (1) s(U) |>=| s(U) (2) s(P) |>| P We may remove the strictly oriented DPs. Processor output: { D6 = (P6, R, i, c) }, where: P6. (1) int#(0, s(U)) => int#(s(0), s(U)) ***** We apply the Subterm Criterion Processor on D4 = (P4, R, i, c). We use the following projection function: nu(map#) = 2 We thus have: (1) cons(U1, V1) |>| V1 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D5 = (P5, R, i, c). We use the following projection function: nu(filter#) = 2 nu(filter2#) = 4 We thus have: (1) cons(X2, Y2) |>| Y2 (2) W2 |>=| W2 (3) Y3 |>=| Y3 We may remove the strictly oriented DPs. Processor output: { D7 = (P7, R, i, c) }, where: P7. (1) filter2#(true, G2, V2, W2) => filter#(G2, W2) (2) filter2#(false, J2, X3, Y3) => filter#(J2, Y3) ***** We apply the Graph Processor on D6 = (P6, R, i, c). We compute a graph approximation with the following edges: 1: As there are no SCCs, this DP problem is removed. Processor output: { }. ***** We apply the Graph Processor on D7 = (P7, R, i, c). We compute a graph approximation with the following edges: 1: 2: As there are no SCCs, this DP problem is removed. Processor output: { }.