We consider universal computability of the STRS with no additional rule schemes: Signature: 0 :: a cons :: a -> b -> b double :: b -> b inc :: b -> b map :: (a -> a) -> b -> b nil :: b plus :: a -> a -> a s :: a -> a times :: a -> a -> a Rules: plus(0, X) -> X plus(s(Y), U) -> s(plus(Y, U)) times(0, V) -> 0 times(s(W), P) -> plus(times(W, P), P) inc(X1) -> map(plus(s(0)), X1) double(Y1) -> map(times(s(s(0))), Y1) map(G1, nil) -> nil map(H1, cons(W1, P1)) -> cons(H1(W1), map(H1, P1)) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, f, c), where: P1. (1) plus#(s(Y), U) => plus#(Y, U) (2) times#(s(W), P) => times#(W, P) (3) times#(s(W), P) => plus#(times(W, P), P) (4) inc#(X1) => plus#(s(0), fresh1) (5) inc#(X1) => map#(plus(s(0)), X1) (6) double#(Y1) => times#(s(s(0)), fresh1) (7) double#(Y1) => map#(times(s(s(0))), Y1) (8) map#(H1, cons(W1, P1)) => map#(H1, P1) ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, f, c). We compute a graph approximation with the following edges: 1: 1 2: 2 3 3: 1 4: 1 5: 8 6: 2 3 7: 8 8: 8 There are 3 SCCs. Processor output: { D2 = (P2, R UNION R_?, f, c) ; D3 = (P3, R UNION R_?, f, c) ; D4 = (P4, R UNION R_?, f, c) }, where: P2. (1) plus#(s(Y), U) => plus#(Y, U) P3. (1) times#(s(W), P) => times#(W, P) P4. (1) map#(H1, cons(W1, P1)) => map#(H1, P1) ***** We apply the Subterm Criterion Processor on D2 = (P2, R UNION R_?, f, c). We use the following projection function: nu(plus#) = 1 We thus have: (1) s(Y) |>| Y All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D3 = (P3, R UNION R_?, f, c). We use the following projection function: nu(times#) = 1 We thus have: (1) s(W) |>| W All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D4 = (P4, R UNION R_?, f, c). We use the following projection function: nu(map#) = 2 We thus have: (1) cons(W1, P1) |>| P1 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.