We consider universal computability of the STRS with no additional rule schemes: Signature: 0 :: b 1 :: b c :: b -> b cons :: c -> d -> d f :: b -> a false :: a filter :: (c -> a) -> d -> d filter2 :: a -> (c -> a) -> c -> d -> d g :: b -> b -> b if :: a -> b -> b -> b map :: (c -> c) -> d -> d nil :: d s :: b -> b true :: a Rules: f(0) -> true f(1) -> false f(s(X)) -> f(X) if(true, s(Y), s(U)) -> s(Y) if(false, s(V), s(W)) -> s(W) g(P, c(X1)) -> c(g(P, X1)) g(Y1, c(U1)) -> g(Y1, if(f(Y1), c(g(s(Y1), U1)), c(U1))) map(H1, nil) -> nil map(I1, cons(P1, X2)) -> cons(I1(P1), map(I1, X2)) filter(Z2, nil) -> nil filter(G2, cons(V2, W2)) -> filter2(G2(V2), G2, V2, W2) filter2(true, J2, X3, Y3) -> cons(X3, filter(J2, Y3)) filter2(false, G3, V3, W3) -> filter(G3, W3) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, f, c), where: P1. (1) f#(s(X)) => f#(X) (2) g#(P, c(X1)) => g#(P, X1) (3) g#(Y1, c(U1)) => f#(Y1) (4) g#(Y1, c(U1)) => g#(s(Y1), U1) (5) g#(Y1, c(U1)) => if#(f(Y1), c(g(s(Y1), U1)), c(U1)) (6) g#(Y1, c(U1)) => g#(Y1, if(f(Y1), c(g(s(Y1), U1)), c(U1))) (7) map#(I1, cons(P1, X2)) => map#(I1, X2) (8) filter#(G2, cons(V2, W2)) => filter2#(G2(V2), G2, V2, W2) (9) filter2#(true, J2, X3, Y3) => filter#(J2, Y3) (10) filter2#(false, G3, V3, W3) => filter#(G3, W3) ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, f, c). We compute a graph approximation with the following edges: 1: 1 2: 2 3 4 5 6 3: 1 4: 2 3 4 5 6 5: 6: 2 3 4 5 6 7: 7 8: 9 10 9: 8 10: 8 There are 4 SCCs. Processor output: { D2 = (P2, R UNION R_?, f, c) ; D3 = (P3, R UNION R_?, f, c) ; D4 = (P4, R UNION R_?, f, c) ; D5 = (P5, R UNION R_?, f, c) }, where: P2. (1) f#(s(X)) => f#(X) P3. (1) g#(P, c(X1)) => g#(P, X1) (2) g#(Y1, c(U1)) => g#(s(Y1), U1) (3) g#(Y1, c(U1)) => g#(Y1, if(f(Y1), c(g(s(Y1), U1)), c(U1))) P4. (1) map#(I1, cons(P1, X2)) => map#(I1, X2) P5. (1) filter#(G2, cons(V2, W2)) => filter2#(G2(V2), G2, V2, W2) (2) filter2#(true, J2, X3, Y3) => filter#(J2, Y3) (3) filter2#(false, G3, V3, W3) => filter#(G3, W3) ***** We apply the Subterm Criterion Processor on D2 = (P2, R UNION R_?, f, c). We use the following projection function: nu(f#) = 1 We thus have: (1) s(X) |>| X All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** No progress could be made on DP problem D3 = (P3, R UNION R_?, f, c).