We consider universal computability of the STRS with no additional rule schemes: Signature: 0 :: a add :: a -> a -> a fact :: a -> a mult :: a -> a -> a rec :: (a -> a -> a) -> a -> a -> a s :: a -> a Rules: add(0, X) -> X add(s(Y), U) -> s(add(Y, U)) mult(0, V) -> 0 mult(s(W), P) -> add(mult(W, P), P) rec(F1, Y1, 0) -> Y1 rec(G1, V1, s(W1)) -> G1(s(W1), rec(G1, V1, W1)) fact -> rec(mult, s(0)) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, f, c), where: P1. (1) add#(s(Y), U) => add#(Y, U) (2) mult#(s(W), P) => mult#(W, P) (3) mult#(s(W), P) => add#(mult(W, P), P) (4) rec#(G1, V1, s(W1)) => rec#(G1, V1, W1) (5) fact#(arg1) => mult#(fresh1, fresh2) (6) fact#(arg1) => rec#(mult, s(0), arg1) ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, f, c). We compute a graph approximation with the following edges: 1: 1 2: 2 3 3: 1 4: 4 5: 2 3 6: 4 There are 3 SCCs. Processor output: { D2 = (P2, R UNION R_?, f, c) ; D3 = (P3, R UNION R_?, f, c) ; D4 = (P4, R UNION R_?, f, c) }, where: P2. (1) add#(s(Y), U) => add#(Y, U) P3. (1) mult#(s(W), P) => mult#(W, P) P4. (1) rec#(G1, V1, s(W1)) => rec#(G1, V1, W1) ***** We apply the Subterm Criterion Processor on D2 = (P2, R UNION R_?, f, c). We use the following projection function: nu(add#) = 1 We thus have: (1) s(Y) |>| Y All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D3 = (P3, R UNION R_?, f, c). We use the following projection function: nu(mult#) = 1 We thus have: (1) s(W) |>| W All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D4 = (P4, R UNION R_?, f, c). We use the following projection function: nu(rec#) = 3 We thus have: (1) s(W1) |>| W1 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.