We consider universal computability of the STRS with no additional rule schemes: Signature: 0 :: a bits :: a -> a cons :: c -> d -> d false :: b filter :: (c -> b) -> d -> d filter2 :: b -> (c -> b) -> c -> d -> d half :: a -> a map :: (c -> c) -> d -> d nil :: d s :: a -> a true :: b Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(X))) -> s(half(X)) bits(0) -> 0 bits(s(Y)) -> s(bits(half(s(Y)))) map(G, nil) -> nil map(H, cons(W, P)) -> cons(H(W), map(H, P)) filter(F1, nil) -> nil filter(Z1, cons(U1, V1)) -> filter2(Z1(U1), Z1, U1, V1) filter2(true, I1, P1, X2) -> cons(P1, filter(I1, X2)) filter2(false, Z2, U2, V2) -> filter(Z2, V2) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) half#(s(s(X))) => half#(X) (2) bits#(s(Y)) => half#(s(Y)) (3) bits#(s(Y)) => bits#(half(s(Y))) (4) map#(H, cons(W, P)) => map#(H, P) (5) filter#(Z1, cons(U1, V1)) => filter2#(Z1(U1), Z1, U1, V1) (6) filter2#(true, I1, P1, X2) => filter#(I1, X2) (7) filter2#(false, Z2, U2, V2) => filter#(Z2, V2) ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, i, c). We compute a graph approximation with the following edges: 1: 1 2: 1 3: 2 3 4: 4 5: 6 7 6: 5 7: 5 There are 4 SCCs. Processor output: { D2 = (P2, R UNION R_?, i, c) ; D3 = (P3, R UNION R_?, i, c) ; D4 = (P4, R UNION R_?, i, c) ; D5 = (P5, R UNION R_?, i, c) }, where: P2. (1) half#(s(s(X))) => half#(X) P3. (1) bits#(s(Y)) => bits#(half(s(Y))) P4. (1) map#(H, cons(W, P)) => map#(H, P) P5. (1) filter#(Z1, cons(U1, V1)) => filter2#(Z1(U1), Z1, U1, V1) (2) filter2#(true, I1, P1, X2) => filter#(I1, X2) (3) filter2#(false, Z2, U2, V2) => filter#(Z2, V2) ***** We apply the Subterm Criterion Processor on D2 = (P2, R UNION R_?, i, c). We use the following projection function: nu(half#) = 1 We thus have: (1) s(s(X)) |>| X All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Usable Rules Processor on D3 = (P3, R UNION R_?, i, c). We obtain 3 usable rules (out of 11 rules in the input problem). Processor output: { D6 = (P3, R2, i, c) }, where: R2. (1) half(0) -> 0 (2) half(s(0)) -> 0 (3) half(s(s(X))) -> s(half(X)) ***** We apply the Subterm Criterion Processor on D4 = (P4, R UNION R_?, i, c). We use the following projection function: nu(map#) = 2 We thus have: (1) cons(W, P) |>| P All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D5 = (P5, R UNION R_?, i, c). We use the following projection function: nu(filter#) = 2 nu(filter2#) = 4 We thus have: (1) cons(U1, V1) |>| V1 (2) X2 |>=| X2 (3) V2 |>=| V2 We may remove the strictly oriented DPs. Processor output: { D7 = (P6, R UNION R_?, i, c) }, where: P6. (1) filter2#(true, I1, P1, X2) => filter#(I1, X2) (2) filter2#(false, Z2, U2, V2) => filter#(Z2, V2) ***** No progress could be made on DP problem D6 = (P3, R2, i, c).