We consider universal computability of the STRS with no additional rule schemes: Signature: cons :: d -> e -> e f :: b -> b -> b -> a false :: c filter :: (d -> c) -> e -> e filter2 :: c -> (d -> c) -> d -> e -> e g :: b -> b -> b map :: (d -> d) -> e -> e nil :: e true :: c Rules: f(g(X, Y), X, U) -> f(U, U, U) g(V, W) -> V g(P, X1) -> X1 map(Z1, nil) -> nil map(G1, cons(V1, W1)) -> cons(G1(V1), map(G1, W1)) filter(J1, nil) -> nil filter(F2, cons(Y2, U2)) -> filter2(F2(Y2), F2, Y2, U2) filter2(true, H2, W2, P2) -> cons(W2, filter(H2, P2)) filter2(false, F3, Y3, U3) -> filter(F3, U3) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) f#(g(X, Y), X, U) => f#(U, U, U) (2) map#(G1, cons(V1, W1)) => map#(G1, W1) (3) filter#(F2, cons(Y2, U2)) => filter2#(F2(Y2), F2, Y2, U2) (4) filter2#(true, H2, W2, P2) => filter#(H2, P2) (5) filter2#(false, F3, Y3, U3) => filter#(F3, U3) ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, i, c). We compute a graph approximation with the following edges: 1: 1 2: 2 3: 4 5 4: 3 5: 3 There are 3 SCCs. Processor output: { D2 = (P2, R UNION R_?, i, c) ; D3 = (P3, R UNION R_?, i, c) ; D4 = (P4, R UNION R_?, i, c) }, where: P2. (1) f#(g(X, Y), X, U) => f#(U, U, U) P3. (1) map#(G1, cons(V1, W1)) => map#(G1, W1) P4. (1) filter#(F2, cons(Y2, U2)) => filter2#(F2(Y2), F2, Y2, U2) (2) filter2#(true, H2, W2, P2) => filter#(H2, P2) (3) filter2#(false, F3, Y3, U3) => filter#(F3, U3) ***** We apply the Usable Rules Processor on D2 = (P2, R UNION R_?, i, c). We obtain 0 usable rules (out of 9 rules in the input problem). Processor output: { D5 = (P2, {}, i, c) }. ***** We apply the Subterm Criterion Processor on D3 = (P3, R UNION R_?, i, c). We use the following projection function: nu(map#) = 2 We thus have: (1) cons(V1, W1) |>| W1 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D4 = (P4, R UNION R_?, i, c). We use the following projection function: nu(filter#) = 2 nu(filter2#) = 4 We thus have: (1) cons(Y2, U2) |>| U2 (2) P2 |>=| P2 (3) U3 |>=| U3 We may remove the strictly oriented DPs. Processor output: { D6 = (P5, R UNION R_?, i, c) }, where: P5. (1) filter2#(true, H2, W2, P2) => filter#(H2, P2) (2) filter2#(false, F3, Y3, U3) => filter#(F3, U3) ***** No progress could be made on DP problem D5 = (P2, {}, i, c).