We consider universal computability of the STRS with no additional rule schemes: Signature: 0 :: d cons :: d -> c -> c false :: a height :: d -> d if :: a -> d -> d le :: d -> d -> a map :: (d -> d) -> c -> c maxlist :: d -> c -> d nil :: c node :: b -> c -> d s :: d -> d true :: a Rules: map(F, nil) -> nil map(Z, cons(U, V)) -> cons(Z(U), map(Z, V)) le(0, W) -> true le(s(P), 0) -> false le(s(X1), s(Y1)) -> le(X1, Y1) maxlist(U1, cons(V1, W1)) -> if(le(U1, V1), maxlist(V1, W1)) maxlist(P1, nil) -> P1 height(node(X2, Y2)) -> s(maxlist(0, map(height, Y2))) The system is accessible function passing by a sort ordering with c = d ≻ b. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) map#(Z, cons(U, V)) => map#(Z, V) (2) le#(s(X1), s(Y1)) => le#(X1, Y1) (3) maxlist#(U1, cons(V1, W1)) => le#(U1, V1) (4) maxlist#(U1, cons(V1, W1)) => maxlist#(V1, W1) (5) height#(node(X2, Y2)) => height#(fresh1) (6) height#(node(X2, Y2)) => map#(height, Y2) (7) height#(node(X2, Y2)) => maxlist#(0, map(height, Y2)) ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, i, c). We compute a graph approximation with the following edges: 1: 1 2: 2 3: 2 4: 3 4 5: 5 6 7 6: 1 7: 3 4 There are 4 SCCs. Processor output: { D2 = (P2, R UNION R_?, i, c) ; D3 = (P3, R UNION R_?, i, c) ; D4 = (P4, R UNION R_?, i, c) ; D5 = (P5, R UNION R_?, i, c) }, where: P2. (1) map#(Z, cons(U, V)) => map#(Z, V) P3. (1) le#(s(X1), s(Y1)) => le#(X1, Y1) P4. (1) maxlist#(U1, cons(V1, W1)) => maxlist#(V1, W1) P5. (1) height#(node(X2, Y2)) => height#(fresh1) ***** We apply the Subterm Criterion Processor on D2 = (P2, R UNION R_?, i, c). We use the following projection function: nu(map#) = 2 We thus have: (1) cons(U, V) |>| V All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D3 = (P3, R UNION R_?, i, c). We use the following projection function: nu(le#) = 1 We thus have: (1) s(X1) |>| X1 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D4 = (P4, R UNION R_?, i, c). We use the following projection function: nu(maxlist#) = 2 We thus have: (1) cons(V1, W1) |>| W1 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Usable Rules Processor on D5 = (P5, R UNION R_?, i, c). We obtain 0 usable rules (out of 8 rules in the input problem). Processor output: { D6 = (P5, {}, i, c) }. ***** No progress could be made on DP problem D6 = (P5, {}, i, c).