We consider universal computability of the STRS with no additional rule schemes: Signature: 0 :: a cons :: c -> d -> d false :: b filter :: (c -> b) -> d -> d filter2 :: b -> (c -> b) -> c -> d -> d map :: (c -> c) -> d -> d minus :: a -> a -> a nil :: d pred :: a -> a quot :: a -> a -> a s :: a -> a true :: b Rules: pred(s(X)) -> X minus(Y, 0) -> Y minus(U, s(V)) -> pred(minus(U, V)) quot(0, s(W)) -> 0 quot(s(P), s(X1)) -> s(quot(minus(P, X1), s(X1))) map(Z1, nil) -> nil map(G1, cons(V1, W1)) -> cons(G1(V1), map(G1, W1)) filter(J1, nil) -> nil filter(F2, cons(Y2, U2)) -> filter2(F2(Y2), F2, Y2, U2) filter2(true, H2, W2, P2) -> cons(W2, filter(H2, P2)) filter2(false, F3, Y3, U3) -> filter(F3, U3) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) minus#(U, s(V)) => minus#(U, V) (2) minus#(U, s(V)) => pred#(minus(U, V)) (3) quot#(s(P), s(X1)) => minus#(P, X1) (4) quot#(s(P), s(X1)) => quot#(minus(P, X1), s(X1)) (5) map#(G1, cons(V1, W1)) => map#(G1, W1) (6) filter#(F2, cons(Y2, U2)) => filter2#(F2(Y2), F2, Y2, U2) (7) filter2#(true, H2, W2, P2) => filter#(H2, P2) (8) filter2#(false, F3, Y3, U3) => filter#(F3, U3) ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, i, c). We compute a graph approximation with the following edges: 1: 1 2 2: 3: 1 2 4: 3 4 5: 5 6: 7 8 7: 6 8: 6 There are 4 SCCs. Processor output: { D2 = (P2, R UNION R_?, i, c) ; D3 = (P3, R UNION R_?, i, c) ; D4 = (P4, R UNION R_?, i, c) ; D5 = (P5, R UNION R_?, i, c) }, where: P2. (1) minus#(U, s(V)) => minus#(U, V) P3. (1) quot#(s(P), s(X1)) => quot#(minus(P, X1), s(X1)) P4. (1) map#(G1, cons(V1, W1)) => map#(G1, W1) P5. (1) filter#(F2, cons(Y2, U2)) => filter2#(F2(Y2), F2, Y2, U2) (2) filter2#(true, H2, W2, P2) => filter#(H2, P2) (3) filter2#(false, F3, Y3, U3) => filter#(F3, U3) ***** We apply the Subterm Criterion Processor on D2 = (P2, R UNION R_?, i, c). We use the following projection function: nu(minus#) = 2 We thus have: (1) s(V) |>| V All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Usable Rules Processor on D3 = (P3, R UNION R_?, i, c). We obtain 3 usable rules (out of 11 rules in the input problem). Processor output: { D6 = (P3, R2, i, c) }, where: R2. (1) minus(Y, 0) -> Y (2) minus(U, s(V)) -> pred(minus(U, V)) (3) pred(s(X)) -> X ***** We apply the Subterm Criterion Processor on D4 = (P4, R UNION R_?, i, c). We use the following projection function: nu(map#) = 2 We thus have: (1) cons(V1, W1) |>| W1 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D5 = (P5, R UNION R_?, i, c). We use the following projection function: nu(filter#) = 2 nu(filter2#) = 4 We thus have: (1) cons(Y2, U2) |>| U2 (2) P2 |>=| P2 (3) U3 |>=| U3 We may remove the strictly oriented DPs. Processor output: { D7 = (P6, R UNION R_?, i, c) }, where: P6. (1) filter2#(true, H2, W2, P2) => filter#(H2, P2) (2) filter2#(false, F3, Y3, U3) => filter#(F3, U3) ***** No progress could be made on DP problem D6 = (P3, R2, i, c).