We consider termination of the LCTRS with only rule scheme Calc: Signature: condLoop :: Bool -> Int -> Int -> Int -> Int condMod :: Bool -> Int -> Int -> Int -> Int halfExp :: Int -> Int -> Int -> Int pow :: Int -> Int -> Int sqBase :: Int -> Int -> Int -> Int Rules: pow(b, e) -> condLoop(e > 0, b, e, 1) | b = b /\ e = e condLoop(false, b, e, r) -> r | b = b /\ e = e /\ r = r condLoop(true, b, e, r) -> condMod(e % 2 = 1, b, e, r) | b = b /\ e = e /\ r = r condMod(false, b, e, r) -> sqBase(b, e, r) | b = b /\ e = e /\ r = r condMod(true, b, e, r) -> sqBase(b, e, r * b) | b = b /\ e = e /\ r = r sqBase(b, e, r) -> halfExp(b * b, e, r) | b = b /\ e = e /\ r = r halfExp(b, e, r) -> condLoop(e > 0, b, e / 2, r) | b = b /\ e = e /\ r = r The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R, i, c), where: P1. (1) pow#(b, e) => condLoop#(e > 0, b, e, 1) | b = b /\ e = e (2) condLoop#(true, b, e, r) => condMod#(e % 2 = 1, b, e, r) | b = b /\ e = e /\ r = r (3) condMod#(false, b, e, r) => sqBase#(b, e, r) | b = b /\ e = e /\ r = r (4) condMod#(true, b, e, r) => sqBase#(b, e, r * b) | b = b /\ e = e /\ r = r (5) sqBase#(b, e, r) => halfExp#(b * b, e, r) | b = b /\ e = e /\ r = r (6) halfExp#(b, e, r) => condLoop#(e > 0, b, e / 2, r) | b = b /\ e = e /\ r = r ***** We apply the Graph Processor on D1 = (P1, R, i, c). We compute a graph approximation with the following edges: 1: 2 2: 3 4 3: 5 4: 5 5: 6 6: 2 There is only one SCC, so all DPs not inside the SCC can be removed. Processor output: { D2 = (P2, R, i, c) }, where: P2. (1) condLoop#(true, b, e, r) => condMod#(e % 2 = 1, b, e, r) | b = b /\ e = e /\ r = r (2) condMod#(false, b, e, r) => sqBase#(b, e, r) | b = b /\ e = e /\ r = r (3) condMod#(true, b, e, r) => sqBase#(b, e, r * b) | b = b /\ e = e /\ r = r (4) sqBase#(b, e, r) => halfExp#(b * b, e, r) | b = b /\ e = e /\ r = r (5) halfExp#(b, e, r) => condLoop#(e > 0, b, e / 2, r) | b = b /\ e = e /\ r = r ***** We apply the Chaining Processor Processor on D2 = (P2, R, i, c). We chain DPs according to the following mapping: sqBase#(b, e, r) => condLoop#(e > 0, b * b, e / 2, r) | b = b /\ e = e /\ r = r /\ (b * b = b * b /\ e = e /\ r = r) is obtained by chaining sqBase#(b, e, r) => halfExp#(b * b, e, r) | b = b /\ e = e /\ r = r and halfExp#(b', e', r') => condLoop#(e' > 0, b', e' / 2, r') | b' = b' /\ e' = e' /\ r' = r' The following DPs were deleted: sqBase#(b, e, r) => halfExp#(b * b, e, r) | b = b /\ e = e /\ r = r halfExp#(b, e, r) => condLoop#(e > 0, b, e / 2, r) | b = b /\ e = e /\ r = r By chaining, we added 1 DPs and removed 2 DPs. Processor output: { D3 = (P3, R, i, c) }, where: P3. (1) condLoop#(true, b, e, r) => condMod#(e % 2 = 1, b, e, r) | b = b /\ e = e /\ r = r (2) condMod#(false, b, e, r) => sqBase#(b, e, r) | b = b /\ e = e /\ r = r (3) condMod#(true, b, e, r) => sqBase#(b, e, r * b) | b = b /\ e = e /\ r = r (4) sqBase#(b, e, r) => condLoop#(e > 0, b * b, e / 2, r) | b = b /\ e = e /\ r = r /\ (b * b = b * b /\ e = e /\ r = r) ***** We apply the Chaining Processor Processor on D3 = (P3, R, i, c). We chain DPs according to the following mapping: condMod#(false, b, e, r) => condLoop#(e > 0, b * b, e / 2, r) | b = b /\ e = e /\ r = r /\ (b = b /\ e = e /\ r = r /\ (b * b = b * b /\ e = e /\ r = r)) is obtained by chaining condMod#(false, b, e, r) => sqBase#(b, e, r) | b = b /\ e = e /\ r = r and sqBase#(b', e', r') => condLoop#(e' > 0, b' * b', e' / 2, r') | b' = b' /\ e' = e' /\ r' = r' /\ (b' * b' = b' * b' /\ e' = e' /\ r' = r') condMod#(true, b, e, r) => condLoop#(e > 0, b * b, e / 2, r * b) | b = b /\ e = e /\ r = r /\ (b = b /\ e = e /\ r * b = r * b /\ (b * b = b * b /\ e = e /\ r * b = r * b)) is obtained by chaining condMod#(true, b, e, r) => sqBase#(b, e, r * b) | b = b /\ e = e /\ r = r and sqBase#(b', e', r') => condLoop#(e' > 0, b' * b', e' / 2, r') | b' = b' /\ e' = e' /\ r' = r' /\ (b' * b' = b' * b' /\ e' = e' /\ r' = r') The following DPs were deleted: condMod#(false, b, e, r) => sqBase#(b, e, r) | b = b /\ e = e /\ r = r condMod#(true, b, e, r) => sqBase#(b, e, r * b) | b = b /\ e = e /\ r = r sqBase#(b, e, r) => condLoop#(e > 0, b * b, e / 2, r) | b = b /\ e = e /\ r = r /\ (b * b = b * b /\ e = e /\ r = r) By chaining, we added 2 DPs and removed 3 DPs. Processor output: { D4 = (P4, R, i, c) }, where: P4. (1) condLoop#(true, b, e, r) => condMod#(e % 2 = 1, b, e, r) | b = b /\ e = e /\ r = r (2) condMod#(false, b, e, r) => condLoop#(e > 0, b * b, e / 2, r) | b = b /\ e = e /\ r = r /\ (b = b /\ e = e /\ r = r /\ (b * b = b * b /\ e = e /\ r = r)) (3) condMod#(true, b, e, r) => condLoop#(e > 0, b * b, e / 2, r * b) | b = b /\ e = e /\ r = r /\ (b = b /\ e = e /\ r * b = r * b /\ (b * b = b * b /\ e = e /\ r * b = r * b)) ***** We apply the Usable Rules Processor on D4 = (P4, R, i, c). We obtain 0 usable rules (out of 7 rules in the input problem). Processor output: { D5 = (P4, {}, i, c) }. ***** No progress could be made on DP problem D5 = (P4, {}, i, c).