We consider termination of the STRS with no additional rule schemes: Signature: 0 :: b cons :: b -> a -> a double :: a -> a inc :: a -> a map :: (b -> b) -> a -> a nil :: a plus :: b -> b -> b s :: b -> b times :: b -> b -> b Rules: plus(0, X) -> X plus(s(Y), U) -> s(plus(Y, U)) times(0, V) -> 0 times(s(W), P) -> plus(times(W, P), P) map(F1, nil) -> nil map(Z1, cons(U1, V1)) -> cons(Z1(U1), map(Z1, V1)) inc -> map(plus(s(0))) double -> map(times(s(s(0)))) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R, i, c), where: P1. (1) plus#(s(Y), U) => plus#(Y, U) (2) times#(s(W), P) => times#(W, P) (3) times#(s(W), P) => plus#(times(W, P), P) (4) map#(Z1, cons(U1, V1)) => map#(Z1, V1) (5) inc#(arg1) => plus#(s(0), fresh1) (6) inc#(arg1) => map#(plus(s(0)), arg1) (7) double#(arg1) => times#(s(s(0)), fresh1) (8) double#(arg1) => map#(times(s(s(0))), arg1) ***** We apply the Graph Processor on D1 = (P1, R, i, c). We compute a graph approximation with the following edges: 1: 1 2: 2 3 3: 1 4: 4 5: 1 6: 4 7: 2 3 8: 4 There are 3 SCCs. Processor output: { D2 = (P2, R, i, c) ; D3 = (P3, R, i, c) ; D4 = (P4, R, i, c) }, where: P2. (1) plus#(s(Y), U) => plus#(Y, U) P3. (1) times#(s(W), P) => times#(W, P) P4. (1) map#(Z1, cons(U1, V1)) => map#(Z1, V1) ***** We apply the Subterm Criterion Processor on D2 = (P2, R, i, c). We use the following projection function: nu(plus#) = 1 We thus have: (1) s(Y) |>| Y All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D3 = (P3, R, i, c). We use the following projection function: nu(times#) = 1 We thus have: (1) s(W) |>| W All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D4 = (P4, R, i, c). We use the following projection function: nu(map#) = 2 We thus have: (1) cons(U1, V1) |>| V1 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.