We consider termination of the STRS with no additional rule schemes: Signature: cons :: b -> c -> c leaf :: a -> b mapt :: (a -> a) -> b -> b maptlist :: (a -> a) -> c -> c nil :: c node :: c -> b Rules: mapt(F, leaf(Y)) -> leaf(F(Y)) mapt(G, node(V)) -> node(maptlist(G, V)) maptlist(I, nil) -> nil maptlist(J, cons(X1, Y1)) -> cons(mapt(J, X1), maptlist(J, Y1)) The system is accessible function passing by a sort ordering with b = c ≻ a. We start by computing the initial DP problem D1 = (P1, R, i, c), where: P1. (1) mapt#(G, node(V)) => maptlist#(G, V) (2) maptlist#(J, cons(X1, Y1)) => mapt#(J, X1) (3) maptlist#(J, cons(X1, Y1)) => maptlist#(J, Y1) ***** We apply the Subterm Criterion Processor on D1 = (P1, R, i, c). We use the following projection function: nu(mapt#) = 2 nu(maptlist#) = 2 We thus have: (1) node(V) |>| V (2) cons(X1, Y1) |>| X1 (3) cons(X1, Y1) |>| Y1 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.