We consider termination of the STRS with no additional rule schemes: Signature: * :: a -> a -> a 1 :: a cons :: c -> d -> d false :: b filter :: (c -> b) -> d -> d filter2 :: b -> (c -> b) -> c -> d -> d i :: a -> a map :: (c -> c) -> d -> d nil :: d true :: b Rules: *(1, X) -> X *(Y, 1) -> Y *(i(U), U) -> 1 *(V, i(V)) -> 1 *(i(W), *(W, P)) -> P *(X1, *(i(X1), Y1)) -> Y1 i(1) -> 1 i(i(U1)) -> U1 map(H1, nil) -> nil map(I1, cons(P1, X2)) -> cons(I1(P1), map(I1, X2)) filter(Z2, nil) -> nil filter(G2, cons(V2, W2)) -> filter2(G2(V2), G2, V2, W2) filter2(true, J2, X3, Y3) -> cons(X3, filter(J2, Y3)) filter2(false, G3, V3, W3) -> filter(G3, W3) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R, i, c), where: P1. (1) map#(I1, cons(P1, X2)) => map#(I1, X2) (2) filter#(G2, cons(V2, W2)) => filter2#(G2(V2), G2, V2, W2) (3) filter2#(true, J2, X3, Y3) => filter#(J2, Y3) (4) filter2#(false, G3, V3, W3) => filter#(G3, W3) ***** We apply the Graph Processor on D1 = (P1, R, i, c). We compute a graph approximation with the following edges: 1: 1 2: 3 4 3: 2 4: 2 There are 2 SCCs. Processor output: { D2 = (P2, R, i, c) ; D3 = (P3, R, i, c) }, where: P2. (1) map#(I1, cons(P1, X2)) => map#(I1, X2) P3. (1) filter#(G2, cons(V2, W2)) => filter2#(G2(V2), G2, V2, W2) (2) filter2#(true, J2, X3, Y3) => filter#(J2, Y3) (3) filter2#(false, G3, V3, W3) => filter#(G3, W3) ***** We apply the Subterm Criterion Processor on D2 = (P2, R, i, c). We use the following projection function: nu(map#) = 2 We thus have: (1) cons(P1, X2) |>| X2 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D3 = (P3, R, i, c). We use the following projection function: nu(filter#) = 2 nu(filter2#) = 4 We thus have: (1) cons(V2, W2) |>| W2 (2) Y3 |>=| Y3 (3) W3 |>=| W3 We may remove the strictly oriented DPs. Processor output: { D4 = (P4, R, i, c) }, where: P4. (1) filter2#(true, J2, X3, Y3) => filter#(J2, Y3) (2) filter2#(false, G3, V3, W3) => filter#(G3, W3) ***** We apply the Graph Processor on D4 = (P4, R, i, c). We compute a graph approximation with the following edges: 1: 2: As there are no SCCs, this DP problem is removed. Processor output: { }.