We consider termination of the LCTRS with only rule scheme Calc: Signature: eval :: Int -> Int -> Int -> o Rules: eval(x, y, z) -> eval(x - 1, y, z) | x + y > z /\ z >= 0 /\ x > 0 eval(x, y, z) -> eval(x, y - 1, z) | x + y > z /\ z >= 0 /\ 0 >= x /\ y > 0 eval(x, y, z) -> eval(x, y, z) | x + y > z /\ z >= 0 /\ 0 >= x /\ 0 >= y The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R, i, c), where: P1. (1) eval#(x, y, z) => eval#(x - 1, y, z) | x + y > z /\ z >= 0 /\ x > 0 (2) eval#(x, y, z) => eval#(x, y - 1, z) | x + y > z /\ z >= 0 /\ 0 >= x /\ y > 0 (3) eval#(x, y, z) => eval#(x, y, z) | x + y > z /\ z >= 0 /\ 0 >= x /\ 0 >= y ***** We apply the Graph Processor on D1 = (P1, R, i, c). We compute a graph approximation with the following edges: 1: 1 2 2: 2 3: There are 2 SCCs. Processor output: { D2 = (P2, R, i, c) ; D3 = (P3, R, i, c) }, where: P2. (1) eval#(x, y, z) => eval#(x, y - 1, z) | x + y > z /\ z >= 0 /\ 0 >= x /\ y > 0 P3. (1) eval#(x, y, z) => eval#(x - 1, y, z) | x + y > z /\ z >= 0 /\ x > 0 ***** We apply the Integer Function Processor on D2 = (P2, R, i, c). We use the following integer mapping: J(eval#) = arg_2 + 1 We thus have: (1) x + y > z /\ z >= 0 /\ 0 >= x /\ y > 0 |= y + 1 > y - 1 + 1 (and y + 1 >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Integer Function Processor on D3 = (P3, R, i, c). We use the following integer mapping: J(eval#) = arg_1 + arg_2 - arg_3 - 1 We thus have: (1) x + y > z /\ z >= 0 /\ x > 0 |= x + y - z - 1 > x - 1 + y - z - 1 (and x + y - z - 1 >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.