We consider termination of the LCTRS with only rule scheme Calc: Signature: eval :: Int -> Int -> o Rules: eval(x, y) -> eval(x, y + 1) | x > y eval(x, y) -> eval(x, y + 1) | y > x /\ x > y eval(x, y) -> eval(x + 1, y) | x > y /\ y >= x eval(x, y) -> eval(x + 1, y) | y > x /\ y >= x The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R, i, c), where: P1. (1) eval#(x, y) => eval#(x, y + 1) | x > y (2) eval#(x, y) => eval#(x, y + 1) | y > x /\ x > y (3) eval#(x, y) => eval#(x + 1, y) | x > y /\ y >= x (4) eval#(x, y) => eval#(x + 1, y) | y > x /\ y >= x ***** We apply the Graph Processor on D1 = (P1, R, i, c). We compute a graph approximation with the following edges: 1: 1 2: 3: 4: 4 There are 2 SCCs. Processor output: { D2 = (P2, R, i, c) ; D3 = (P3, R, i, c) }, where: P2. (1) eval#(x, y) => eval#(x, y + 1) | x > y P3. (1) eval#(x, y) => eval#(x + 1, y) | y > x /\ y >= x ***** We apply the Integer Function Processor on D2 = (P2, R, i, c). We use the following integer mapping: J(eval#) = arg_1 - arg_2 We thus have: (1) x > y |= x - y > x - (y + 1) (and x - y >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Integer Function Processor on D3 = (P3, R, i, c). We use the following integer mapping: J(eval#) = arg_2 - arg_1 We thus have: (1) y > x /\ y >= x |= y - x > y - (x + 1) (and y - x >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.