We consider termination of the STRS with no additional rule schemes: Signature: 0 :: a cons :: e -> f -> f f :: a -> a -> a -> b false :: d filter :: (e -> d) -> f -> f filter2 :: d -> (e -> d) -> e -> f -> f g :: c -> c -> c map :: (e -> e) -> f -> f nil :: f plus :: a -> a -> a s :: a -> a true :: d Rules: plus(X, 0) -> X plus(Y, s(U)) -> s(plus(Y, U)) f(0, s(0), V) -> f(V, plus(V, V), V) g(W, P) -> W g(X1, Y1) -> Y1 map(G1, nil) -> nil map(H1, cons(W1, P1)) -> cons(H1(W1), map(H1, P1)) filter(F2, nil) -> nil filter(Z2, cons(U2, V2)) -> filter2(Z2(U2), Z2, U2, V2) filter2(true, I2, P2, X3) -> cons(P2, filter(I2, X3)) filter2(false, Z3, U3, V3) -> filter(Z3, V3) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R, i, c), where: P1. (1) plus#(Y, s(U)) => plus#(Y, U) (2) f#(0, s(0), V) => plus#(V, V) (3) f#(0, s(0), V) => f#(V, plus(V, V), V) (4) map#(H1, cons(W1, P1)) => map#(H1, P1) (5) filter#(Z2, cons(U2, V2)) => filter2#(Z2(U2), Z2, U2, V2) (6) filter2#(true, I2, P2, X3) => filter#(I2, X3) (7) filter2#(false, Z3, U3, V3) => filter#(Z3, V3) ***** We apply the Graph Processor on D1 = (P1, R, i, c). We compute a graph approximation with the following edges: 1: 1 2: 1 3: 2 3 4: 4 5: 6 7 6: 5 7: 5 There are 4 SCCs. Processor output: { D2 = (P2, R, i, c) ; D3 = (P3, R, i, c) ; D4 = (P4, R, i, c) ; D5 = (P5, R, i, c) }, where: P2. (1) plus#(Y, s(U)) => plus#(Y, U) P3. (1) f#(0, s(0), V) => f#(V, plus(V, V), V) P4. (1) map#(H1, cons(W1, P1)) => map#(H1, P1) P5. (1) filter#(Z2, cons(U2, V2)) => filter2#(Z2(U2), Z2, U2, V2) (2) filter2#(true, I2, P2, X3) => filter#(I2, X3) (3) filter2#(false, Z3, U3, V3) => filter#(Z3, V3) ***** We apply the Subterm Criterion Processor on D2 = (P2, R, i, c). We use the following projection function: nu(plus#) = 2 We thus have: (1) s(U) |>| U All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Usable Rules Processor on D3 = (P3, R, i, c). We obtain 2 usable rules (out of 11 rules in the input problem). Processor output: { D6 = (P3, R2, i, c) }, where: R2. (1) plus(X, 0) -> X (2) plus(Y, s(U)) -> s(plus(Y, U)) ***** We apply the Subterm Criterion Processor on D4 = (P4, R, i, c). We use the following projection function: nu(map#) = 2 We thus have: (1) cons(W1, P1) |>| P1 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D5 = (P5, R, i, c). We use the following projection function: nu(filter#) = 2 nu(filter2#) = 4 We thus have: (1) cons(U2, V2) |>| V2 (2) X3 |>=| X3 (3) V3 |>=| V3 We may remove the strictly oriented DPs. Processor output: { D7 = (P6, R, i, c) }, where: P6. (1) filter2#(true, I2, P2, X3) => filter#(I2, X3) (2) filter2#(false, Z3, U3, V3) => filter#(Z3, V3) ***** No progress could be made on DP problem D6 = (P3, R2, i, c).