We consider termination of the STRS with no additional rule schemes: Signature: 0 :: a 1 :: a cons :: c -> d -> d f :: a -> a -> a -> a false :: b filter :: (c -> b) -> d -> d filter2 :: b -> (c -> b) -> c -> d -> d map :: (c -> c) -> d -> d nil :: d s :: a -> a true :: b Rules: f(0, 1, X) -> f(s(X), X, X) f(Y, U, s(V)) -> s(f(0, 1, V)) map(I, nil) -> nil map(J, cons(X1, Y1)) -> cons(J(X1), map(J, Y1)) filter(G1, nil) -> nil filter(H1, cons(W1, P1)) -> filter2(H1(W1), H1, W1, P1) filter2(true, F2, Y2, U2) -> cons(Y2, filter(F2, U2)) filter2(false, H2, W2, P2) -> filter(H2, P2) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R, i, c), where: P1. (1) f#(0, 1, X) => f#(s(X), X, X) (2) f#(Y, U, s(V)) => f#(0, 1, V) (3) map#(J, cons(X1, Y1)) => map#(J, Y1) (4) filter#(H1, cons(W1, P1)) => filter2#(H1(W1), H1, W1, P1) (5) filter2#(true, F2, Y2, U2) => filter#(F2, U2) (6) filter2#(false, H2, W2, P2) => filter#(H2, P2) ***** We apply the Graph Processor on D1 = (P1, R, i, c). We compute a graph approximation with the following edges: 1: 2 2: 1 2 3: 3 4: 5 6 5: 4 6: 4 There are 3 SCCs. Processor output: { D2 = (P2, R, i, c) ; D3 = (P3, R, i, c) ; D4 = (P4, R, i, c) }, where: P2. (1) f#(0, 1, X) => f#(s(X), X, X) (2) f#(Y, U, s(V)) => f#(0, 1, V) P3. (1) map#(J, cons(X1, Y1)) => map#(J, Y1) P4. (1) filter#(H1, cons(W1, P1)) => filter2#(H1(W1), H1, W1, P1) (2) filter2#(true, F2, Y2, U2) => filter#(F2, U2) (3) filter2#(false, H2, W2, P2) => filter#(H2, P2) ***** We apply the Subterm Criterion Processor on D2 = (P2, R, i, c). We use the following projection function: nu(f#) = 3 We thus have: (1) X |>=| X (2) s(V) |>| V We may remove the strictly oriented DPs. Processor output: { D5 = (P5, R, i, c) }, where: P5. (1) f#(0, 1, X) => f#(s(X), X, X) ***** We apply the Subterm Criterion Processor on D3 = (P3, R, i, c). We use the following projection function: nu(map#) = 2 We thus have: (1) cons(X1, Y1) |>| Y1 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D4 = (P4, R, i, c). We use the following projection function: nu(filter#) = 2 nu(filter2#) = 4 We thus have: (1) cons(W1, P1) |>| P1 (2) U2 |>=| U2 (3) P2 |>=| P2 We may remove the strictly oriented DPs. Processor output: { D6 = (P6, R, i, c) }, where: P6. (1) filter2#(true, F2, Y2, U2) => filter#(F2, U2) (2) filter2#(false, H2, W2, P2) => filter#(H2, P2) ***** We apply the Graph Processor on D5 = (P5, R, i, c). We compute a graph approximation with the following edges: 1: As there are no SCCs, this DP problem is removed. Processor output: { }. ***** We apply the Graph Processor on D6 = (P6, R, i, c). We compute a graph approximation with the following edges: 1: 2: As there are no SCCs, this DP problem is removed. Processor output: { }.