We consider termination of the LCTRS with only rule scheme Calc: Signature: eval_1 :: Int -> Int -> o eval_2 :: Int -> Int -> o Rules: eval_1(x, y) -> eval_2(x + 1, 1) | x >= 0 /\ y = y eval_2(x, y) -> eval_2(x, y + 1) | x >= 0 /\ y > 0 /\ x >= y eval_2(x, y) -> eval_1(x - 2, y) | x >= 0 /\ y > 0 /\ y > x The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R, i, c), where: P1. (1) eval_1#(x, y) => eval_2#(x + 1, 1) | x >= 0 /\ y = y (2) eval_2#(x, y) => eval_2#(x, y + 1) | x >= 0 /\ y > 0 /\ x >= y (3) eval_2#(x, y) => eval_1#(x - 2, y) | x >= 0 /\ y > 0 /\ y > x ***** We apply the Integer Function Processor on D1 = (P1, R, i, c). We use the following integer mapping: J(eval_1#) = arg_1 + 1 J(eval_2#) = arg_1 We thus have: (1) x >= 0 /\ y = y |= x + 1 >= x + 1 (2) x >= 0 /\ y > 0 /\ x >= y |= x >= x (3) x >= 0 /\ y > 0 /\ y > x |= x > x - 2 + 1 (and x >= 0) We may remove the strictly oriented DPs, which yields: Processor output: { D2 = (P2, R, i, c) }, where: P2. (1) eval_1#(x, y) => eval_2#(x + 1, 1) | x >= 0 /\ y = y (2) eval_2#(x, y) => eval_2#(x, y + 1) | x >= 0 /\ y > 0 /\ x >= y ***** We apply the Graph Processor on D2 = (P2, R, i, c). We compute a graph approximation with the following edges: 1: 2 2: 2 There is only one SCC, so all DPs not inside the SCC can be removed. Processor output: { D3 = (P3, R, i, c) }, where: P3. (1) eval_2#(x, y) => eval_2#(x, y + 1) | x >= 0 /\ y > 0 /\ x >= y ***** We apply the Integer Function Processor on D3 = (P3, R, i, c). We use the following integer mapping: J(eval_2#) = arg_1 - arg_2 We thus have: (1) x >= 0 /\ y > 0 /\ x >= y |= x - y > x - (y + 1) (and x - y >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.