We consider termination of the LCTRS with only rule scheme Calc: Signature: eval :: Int -> Int -> Int -> o Rules: eval(x, y, z) -> eval(x - 1, y - 1, z) | x > z /\ y > z The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R, i, c), where: P1. (1) eval#(x, y, z) => eval#(x - 1, y - 1, z) | x > z /\ y > z ***** We apply the Integer Function Processor on D1 = (P1, R, i, c). We use the following integer mapping: J(eval#) = arg_2 - arg_3 - 1 We thus have: (1) x > z /\ y > z |= y - z - 1 > y - 1 - z - 1 (and y - z - 1 >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.