We consider universal computability of the STRS with no additional rule schemes: Signature: append :: a -> a -> a concat :: a -> a cons :: a -> a -> a flatten :: a -> a map :: (a -> a) -> a -> a nil :: a node :: a -> a -> a Rules: map(F, nil) -> nil map(Z, cons(U, V)) -> cons(Z(U), map(Z, V)) flatten(node(W, P)) -> cons(W, concat(map(flatten, P))) concat(nil) -> nil concat(cons(X1, Y1)) -> append(X1, concat(Y1)) append(nil, U1) -> U1 append(cons(V1, W1), P1) -> cons(V1, append(W1, P1)) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) map#(Z, cons(U, V)) => map#(Z, V) (2) flatten#(node(W, P)) => flatten#(fresh1) (3) flatten#(node(W, P)) => map#(flatten, P) (4) flatten#(node(W, P)) => concat#(map(flatten, P)) (5) concat#(cons(X1, Y1)) => concat#(Y1) (6) concat#(cons(X1, Y1)) => append#(X1, concat(Y1)) (7) append#(cons(V1, W1), P1) => append#(W1, P1) ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, i, c). We compute a graph approximation with the following edges: 1: 1 2: 2 3 4 3: 1 4: 5 6 5: 5 6 6: 7 7: 7 There are 4 SCCs. Processor output: { D2 = (P2, R UNION R_?, i, c) ; D3 = (P3, R UNION R_?, i, c) ; D4 = (P4, R UNION R_?, i, c) ; D5 = (P5, R UNION R_?, i, c) }, where: P2. (1) map#(Z, cons(U, V)) => map#(Z, V) P3. (1) append#(cons(V1, W1), P1) => append#(W1, P1) P4. (1) concat#(cons(X1, Y1)) => concat#(Y1) P5. (1) flatten#(node(W, P)) => flatten#(fresh1) ***** We apply the Subterm Criterion Processor on D2 = (P2, R UNION R_?, i, c). We use the following projection function: nu(map#) = 2 We thus have: (1) cons(U, V) |>| V All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D3 = (P3, R UNION R_?, i, c). We use the following projection function: nu(append#) = 1 We thus have: (1) cons(V1, W1) |>| W1 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D4 = (P4, R UNION R_?, i, c). We use the following projection function: nu(concat#) = 1 We thus have: (1) cons(X1, Y1) |>| Y1 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Usable Rules Processor on D5 = (P5, R UNION R_?, i, c). We obtain 0 usable rules (out of 7 rules in the input problem). Processor output: { D6 = (P5, {}, i, c) }. ***** No progress could be made on DP problem D6 = (P5, {}, i, c).