We consider universal computability of the STRS with no additional rule schemes: Signature: cons :: c -> d -> d f :: a -> a -> a false :: b filter :: (c -> b) -> d -> d filter2 :: b -> (c -> b) -> c -> d -> d g :: a -> a h :: a -> a map :: (c -> c) -> d -> d nil :: d true :: b Rules: g(h(g(X))) -> g(X) g(g(Y)) -> g(h(g(Y))) h(h(U)) -> h(f(h(U), U)) map(H, nil) -> nil map(I, cons(P, X1)) -> cons(I(P), map(I, X1)) filter(Z1, nil) -> nil filter(G1, cons(V1, W1)) -> filter2(G1(V1), G1, V1, W1) filter2(true, J1, X2, Y2) -> cons(X2, filter(J1, Y2)) filter2(false, G2, V2, W2) -> filter(G2, W2) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) g#(h(g(X))) => g#(X) (2) g#(g(Y)) => g#(Y) (3) g#(g(Y)) => h#(g(Y)) (4) g#(g(Y)) => g#(h(g(Y))) (5) h#(h(U)) => h#(U) (6) h#(h(U)) => h#(f(h(U), U)) (7) map#(I, cons(P, X1)) => map#(I, X1) (8) filter#(G1, cons(V1, W1)) => filter2#(G1(V1), G1, V1, W1) (9) filter2#(true, J1, X2, Y2) => filter#(J1, Y2) (10) filter2#(false, G2, V2, W2) => filter#(G2, W2) ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, i, c). We compute a graph approximation with the following edges: 1: 1 2 3 4 2: 1 2 3 4 3: 5 6 4: 1 2 3 4 5: 5 6 6: 7: 7 8: 9 10 9: 8 10: 8 There are 4 SCCs. Processor output: { D2 = (P2, R UNION R_?, i, c) ; D3 = (P3, R UNION R_?, i, c) ; D4 = (P4, R UNION R_?, i, c) ; D5 = (P5, R UNION R_?, i, c) }, where: P2. (1) h#(h(U)) => h#(U) P3. (1) g#(h(g(X))) => g#(X) (2) g#(g(Y)) => g#(Y) (3) g#(g(Y)) => g#(h(g(Y))) P4. (1) map#(I, cons(P, X1)) => map#(I, X1) P5. (1) filter#(G1, cons(V1, W1)) => filter2#(G1(V1), G1, V1, W1) (2) filter2#(true, J1, X2, Y2) => filter#(J1, Y2) (3) filter2#(false, G2, V2, W2) => filter#(G2, W2) ***** We apply the Subterm Criterion Processor on D2 = (P2, R UNION R_?, i, c). We use the following projection function: nu(h#) = 1 We thus have: (1) h(U) |>| U All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Usable Rules Processor on D3 = (P3, R UNION R_?, i, c). We obtain 3 usable rules (out of 9 rules in the input problem). Processor output: { D6 = (P3, R2, i, c) }, where: R2. (1) g(h(g(X))) -> g(X) (2) g(g(Y)) -> g(h(g(Y))) (3) h(h(U)) -> h(f(h(U), U)) ***** We apply the Subterm Criterion Processor on D4 = (P4, R UNION R_?, i, c). We use the following projection function: nu(map#) = 2 We thus have: (1) cons(P, X1) |>| X1 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D5 = (P5, R UNION R_?, i, c). We use the following projection function: nu(filter#) = 2 nu(filter2#) = 4 We thus have: (1) cons(V1, W1) |>| W1 (2) Y2 |>=| Y2 (3) W2 |>=| W2 We may remove the strictly oriented DPs. Processor output: { D7 = (P6, R UNION R_?, i, c) }, where: P6. (1) filter2#(true, J1, X2, Y2) => filter#(J1, Y2) (2) filter2#(false, G2, V2, W2) => filter#(G2, W2) ***** No progress could be made on DP problem D6 = (P3, R2, i, c).