We consider universal computability of the LCTRS with only rule scheme Calc: Signature: eval :: Int -> Int -> o Rules: eval(x, y) -> eval(x - 1, y) | x > 0 /\ y = y eval(x, y) -> eval(x - 1, y) | y > 0 /\ x > 0 eval(x, y) -> eval(x, y - 1) | x > 0 /\ 0 >= x /\ y > 0 eval(x, y) -> eval(x, y - 1) | y > 0 /\ 0 >= x eval(x, y) -> eval(x, y) | x > 0 /\ 0 >= x /\ 0 >= y eval(x, y) -> eval(x, y) | y > 0 /\ 0 >= x /\ 0 >= y The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) eval#(x, y) => eval#(x - 1, y) | x > 0 /\ y = y (2) eval#(x, y) => eval#(x - 1, y) | y > 0 /\ x > 0 (3) eval#(x, y) => eval#(x, y - 1) | x > 0 /\ 0 >= x /\ y > 0 (4) eval#(x, y) => eval#(x, y - 1) | y > 0 /\ 0 >= x (5) eval#(x, y) => eval#(x, y) | x > 0 /\ 0 >= x /\ 0 >= y (6) eval#(x, y) => eval#(x, y) | y > 0 /\ 0 >= x /\ 0 >= y ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, i, c). We compute a graph approximation with the following edges: 1: 1 2 4 2: 1 2 4 3: 4: 4 5: 6: There are 2 SCCs. Processor output: { D2 = (P2, R UNION R_?, i, c) ; D3 = (P3, R UNION R_?, i, c) }, where: P2. (1) eval#(x, y) => eval#(x, y - 1) | y > 0 /\ 0 >= x P3. (1) eval#(x, y) => eval#(x - 1, y) | x > 0 /\ y = y (2) eval#(x, y) => eval#(x - 1, y) | y > 0 /\ x > 0 ***** We apply the Integer Function Processor on D2 = (P2, R UNION R_?, i, c). We use the following integer mapping: J(eval#) = arg_2 We thus have: (1) y > 0 /\ 0 >= x |= y > y - 1 (and y >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Integer Function Processor on D3 = (P3, R UNION R_?, i, c). We use the following integer mapping: J(eval#) = arg_1 - 1 We thus have: (1) x > 0 /\ y = y |= x - 1 > x - 1 - 1 (and x - 1 >= 0) (2) y > 0 /\ x > 0 |= x - 1 > x - 1 - 1 (and x - 1 >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.