We consider universal computability of the STRS with no additional rule schemes: Signature: app :: list -> list -> list cons :: nat -> list -> list map :: (nat -> nat) -> list -> list nil :: list reverse :: list -> list shuffle :: list -> list Rules: app(nil, X) -> X app(cons(Y, U), V) -> cons(Y, app(U, V)) reverse(nil) -> nil reverse(cons(W, P)) -> app(reverse(P), cons(W, nil)) shuffle(nil) -> nil shuffle(cons(X1, Y1)) -> cons(X1, shuffle(reverse(Y1))) map(G1, nil) -> nil map(H1, cons(W1, P1)) -> cons(H1(W1), map(H1, P1)) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) app#(cons(Y, U), V) => app#(U, V) (2) reverse#(cons(W, P)) => reverse#(P) (3) reverse#(cons(W, P)) => app#(reverse(P), cons(W, nil)) (4) shuffle#(cons(X1, Y1)) => reverse#(Y1) (5) shuffle#(cons(X1, Y1)) => shuffle#(reverse(Y1)) (6) map#(H1, cons(W1, P1)) => map#(H1, P1) ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, i, c). We compute a graph approximation with the following edges: 1: 1 2: 2 3 3: 1 4: 2 3 5: 4 5 6: 6 There are 4 SCCs. Processor output: { D2 = (P2, R UNION R_?, i, c) ; D3 = (P3, R UNION R_?, i, c) ; D4 = (P4, R UNION R_?, i, c) ; D5 = (P5, R UNION R_?, i, c) }, where: P2. (1) app#(cons(Y, U), V) => app#(U, V) P3. (1) reverse#(cons(W, P)) => reverse#(P) P4. (1) shuffle#(cons(X1, Y1)) => shuffle#(reverse(Y1)) P5. (1) map#(H1, cons(W1, P1)) => map#(H1, P1) ***** We apply the Subterm Criterion Processor on D2 = (P2, R UNION R_?, i, c). We use the following projection function: nu(app#) = 1 We thus have: (1) cons(Y, U) |>| U All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D3 = (P3, R UNION R_?, i, c). We use the following projection function: nu(reverse#) = 1 We thus have: (1) cons(W, P) |>| P All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Usable Rules Processor on D4 = (P4, R UNION R_?, i, c). We obtain 4 usable rules (out of 8 rules in the input problem). Processor output: { D6 = (P4, R2, i, c) }, where: R2. (1) app(nil, X) -> X (2) app(cons(Y, U), V) -> cons(Y, app(U, V)) (3) reverse(nil) -> nil (4) reverse(cons(W, P)) -> app(reverse(P), cons(W, nil)) ***** We apply the Subterm Criterion Processor on D5 = (P5, R UNION R_?, i, c). We use the following projection function: nu(map#) = 2 We thus have: (1) cons(W1, P1) |>| P1 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** No progress could be made on DP problem D6 = (P4, R2, i, c).