We consider universal computability of the LCTRS with only rule scheme Calc: Signature: eval_1 :: Int -> Int -> o eval_2 :: Int -> Int -> o Rules: eval_1(x, y) -> eval_2(x, y) | x > 0 /\ y = y eval_2(x, y) -> eval_2(x, y - 1) | x > 0 /\ y > 0 eval_2(x, y) -> eval_1(x - 1, y) | x > 0 /\ 0 >= y The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) eval_1#(x, y) => eval_2#(x, y) | x > 0 /\ y = y (2) eval_2#(x, y) => eval_2#(x, y - 1) | x > 0 /\ y > 0 (3) eval_2#(x, y) => eval_1#(x - 1, y) | x > 0 /\ 0 >= y ***** We apply the Integer Function Processor on D1 = (P1, R UNION R_?, i, c). We use the following integer mapping: J(eval_1#) = arg_1 J(eval_2#) = arg_1 - 1 We thus have: (1) x > 0 /\ y = y |= x > x - 1 (and x >= 0) (2) x > 0 /\ y > 0 |= x - 1 >= x - 1 (3) x > 0 /\ 0 >= y |= x - 1 >= x - 1 We may remove the strictly oriented DPs, which yields: Processor output: { D2 = (P2, R UNION R_?, i, c) }, where: P2. (1) eval_2#(x, y) => eval_2#(x, y - 1) | x > 0 /\ y > 0 (2) eval_2#(x, y) => eval_1#(x - 1, y) | x > 0 /\ 0 >= y ***** We apply the Graph Processor on D2 = (P2, R UNION R_?, i, c). We compute a graph approximation with the following edges: 1: 1 2 2: There is only one SCC, so all DPs not inside the SCC can be removed. Processor output: { D3 = (P3, R UNION R_?, i, c) }, where: P3. (1) eval_2#(x, y) => eval_2#(x, y - 1) | x > 0 /\ y > 0 ***** We apply the Integer Function Processor on D3 = (P3, R UNION R_?, i, c). We use the following integer mapping: J(eval_2#) = arg_2 - 1 We thus have: (1) x > 0 /\ y > 0 |= y - 1 > y - 1 - 1 (and y - 1 >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.