We consider universal computability of the LCTRS with only rule scheme Calc: Signature: eval_1 :: Int -> Int -> Int -> o eval_2 :: Int -> Int -> Int -> o Rules: eval_1(x, y, z) -> eval_2(x, y, z) | x > y /\ z = z eval_2(x, y, z) -> eval_1(x, y + 1, z) | x > z /\ y = y eval_2(x, y, z) -> eval_1(x, y, z + 1) | x > z /\ y = y eval_2(x, y, z) -> eval_1(x - 1, y, z) | z >= x /\ y = y The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) eval_1#(x, y, z) => eval_2#(x, y, z) | x > y /\ z = z (2) eval_2#(x, y, z) => eval_1#(x, y + 1, z) | x > z /\ y = y (3) eval_2#(x, y, z) => eval_1#(x, y, z + 1) | x > z /\ y = y (4) eval_2#(x, y, z) => eval_1#(x - 1, y, z) | z >= x /\ y = y ***** We apply the Usable Rules Processor on D1 = (P1, R UNION R_?, i, c). We obtain 0 usable rules (out of 4 rules in the input problem). Processor output: { D2 = (P1, {}, i, c) }. ***** No progress could be made on DP problem D2 = (P1, {}, i, c).