We consider universal computability of the LCTRS with only rule scheme Calc: Signature: condAcc :: Bool -> Int -> Int -> Int sqrt :: Int -> Int sqrtAcc :: Int -> Int -> Int Rules: sqrt(x) -> sqrtAcc(x, 0) | x = x sqrtAcc(x, y) -> condAcc(y * y >= x \/ y < 0, x, y) | x = x /\ y = y condAcc(true, x, y) -> y | x = x /\ y = y condAcc(false, x, y) -> sqrtAcc(x, y + 1) | x = x /\ y = y The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) sqrt#(x) => sqrtAcc#(x, 0) | x = x (2) sqrtAcc#(x, y) => condAcc#(y * y >= x \/ y < 0, x, y) | x = x /\ y = y (3) condAcc#(false, x, y) => sqrtAcc#(x, y + 1) | x = x /\ y = y ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, i, c). We compute a graph approximation with the following edges: 1: 2 2: 3 3: 2 There is only one SCC, so all DPs not inside the SCC can be removed. Processor output: { D2 = (P2, R UNION R_?, i, c) }, where: P2. (1) sqrtAcc#(x, y) => condAcc#(y * y >= x \/ y < 0, x, y) | x = x /\ y = y (2) condAcc#(false, x, y) => sqrtAcc#(x, y + 1) | x = x /\ y = y ***** We apply the Chaining Processor Processor on D2 = (P2, R UNION R_?, i, c). We chain DPs according to the following mapping: condAcc#(false, x, y) => condAcc#((y + 1) * (y + 1) >= x \/ y + 1 < 0, x, y + 1) | x = x /\ y = y /\ (x = x /\ y + 1 = y + 1) is obtained by chaining condAcc#(false, x, y) => sqrtAcc#(x, y + 1) | x = x /\ y = y and sqrtAcc#(x', y') => condAcc#(y' * y' >= x' \/ y' < 0, x', y') | x' = x' /\ y' = y' The following DPs were deleted: condAcc#(false, x, y) => sqrtAcc#(x, y + 1) | x = x /\ y = y sqrtAcc#(x, y) => condAcc#(y * y >= x \/ y < 0, x, y) | x = x /\ y = y By chaining, we added 1 DPs and removed 2 DPs. Processor output: { D3 = (P3, R UNION R_?, i, c) }, where: P3. (1) condAcc#(false, x, y) => condAcc#((y + 1) * (y + 1) >= x \/ y + 1 < 0, x, y + 1) | x = x /\ y = y /\ (x = x /\ y + 1 = y + 1) ***** No progress could be made on DP problem D3 = (P3, R UNION R_?, i, c).