We consider universal computability of the STRS with no additional rule schemes: Signature: and :: a -> a -> a cons :: c -> d -> d false :: b filter :: (c -> b) -> d -> d filter2 :: b -> (c -> b) -> c -> d -> d map :: (c -> c) -> d -> d nil :: d not :: a -> a or :: a -> a -> a true :: b Rules: not(not(X)) -> X not(or(Y, U)) -> and(not(Y), not(U)) not(and(V, W)) -> or(not(V), not(W)) and(P, or(X1, Y1)) -> or(and(P, X1), and(P, Y1)) and(or(V1, W1), U1) -> or(and(U1, V1), and(U1, W1)) map(J1, nil) -> nil map(F2, cons(Y2, U2)) -> cons(F2(Y2), map(F2, U2)) filter(H2, nil) -> nil filter(I2, cons(P2, X3)) -> filter2(I2(P2), I2, P2, X3) filter2(true, Z3, U3, V3) -> cons(U3, filter(Z3, V3)) filter2(false, I3, P3, X4) -> filter(I3, X4) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) not#(or(Y, U)) => not#(Y) (2) not#(or(Y, U)) => not#(U) (3) not#(or(Y, U)) => and#(not(Y), not(U)) (4) not#(and(V, W)) => not#(V) (5) not#(and(V, W)) => not#(W) (6) and#(P, or(X1, Y1)) => and#(P, X1) (7) and#(P, or(X1, Y1)) => and#(P, Y1) (8) and#(or(V1, W1), U1) => and#(U1, V1) (9) and#(or(V1, W1), U1) => and#(U1, W1) (10) map#(F2, cons(Y2, U2)) => map#(F2, U2) (11) filter#(I2, cons(P2, X3)) => filter2#(I2(P2), I2, P2, X3) (12) filter2#(true, Z3, U3, V3) => filter#(Z3, V3) (13) filter2#(false, I3, P3, X4) => filter#(I3, X4) ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, i, c). We compute a graph approximation with the following edges: 1: 1 2 3 4 5 2: 1 2 3 4 5 3: 6 7 8 9 4: 1 2 3 4 5 5: 1 2 3 4 5 6: 6 7 8 9 7: 6 7 8 9 8: 6 7 8 9 9: 6 7 8 9 10: 10 11: 12 13 12: 11 13: 11 There are 4 SCCs. Processor output: { D2 = (P2, R UNION R_?, i, c) ; D3 = (P3, R UNION R_?, i, c) ; D4 = (P4, R UNION R_?, i, c) ; D5 = (P5, R UNION R_?, i, c) }, where: P2. (1) and#(P, or(X1, Y1)) => and#(P, X1) (2) and#(P, or(X1, Y1)) => and#(P, Y1) (3) and#(or(V1, W1), U1) => and#(U1, V1) (4) and#(or(V1, W1), U1) => and#(U1, W1) P3. (1) not#(or(Y, U)) => not#(Y) (2) not#(or(Y, U)) => not#(U) (3) not#(and(V, W)) => not#(V) (4) not#(and(V, W)) => not#(W) P4. (1) map#(F2, cons(Y2, U2)) => map#(F2, U2) P5. (1) filter#(I2, cons(P2, X3)) => filter2#(I2(P2), I2, P2, X3) (2) filter2#(true, Z3, U3, V3) => filter#(Z3, V3) (3) filter2#(false, I3, P3, X4) => filter#(I3, X4) ***** No progress could be made on DP problem D2 = (P2, R UNION R_?, i, c).