We consider universal computability of the STRS with no additional rule schemes: Signature: * :: a -> a -> a + :: a -> a -> a cons :: c -> d -> d false :: b filter :: (c -> b) -> d -> d filter2 :: b -> (c -> b) -> c -> d -> d map :: (c -> c) -> d -> d nil :: d true :: b Rules: *(X, +(Y, U)) -> +(*(X, Y), *(X, U)) *(+(W, P), V) -> +(*(V, W), *(V, P)) *(*(X1, Y1), U1) -> *(X1, *(Y1, U1)) +(+(V1, W1), P1) -> +(V1, +(W1, P1)) map(F2, nil) -> nil map(Z2, cons(U2, V2)) -> cons(Z2(U2), map(Z2, V2)) filter(I2, nil) -> nil filter(J2, cons(X3, Y3)) -> filter2(J2(X3), J2, X3, Y3) filter2(true, G3, V3, W3) -> cons(V3, filter(G3, W3)) filter2(false, J3, X4, Y4) -> filter(J3, Y4) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) *#(X, +(Y, U)) => *#(X, Y) (2) *#(X, +(Y, U)) => *#(X, U) (3) *#(X, +(Y, U)) => +#(*(X, Y), *(X, U)) (4) *#(+(W, P), V) => *#(V, W) (5) *#(+(W, P), V) => *#(V, P) (6) *#(+(W, P), V) => +#(*(V, W), *(V, P)) (7) *#(*(X1, Y1), U1) => *#(Y1, U1) (8) *#(*(X1, Y1), U1) => *#(X1, *(Y1, U1)) (9) +#(+(V1, W1), P1) => +#(W1, P1) (10) +#(+(V1, W1), P1) => +#(V1, +(W1, P1)) (11) map#(Z2, cons(U2, V2)) => map#(Z2, V2) (12) filter#(J2, cons(X3, Y3)) => filter2#(J2(X3), J2, X3, Y3) (13) filter2#(true, G3, V3, W3) => filter#(G3, W3) (14) filter2#(false, J3, X4, Y4) => filter#(J3, Y4) ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, i, c). We compute a graph approximation with the following edges: 1: 1 2 3 4 5 6 7 8 2: 1 2 3 4 5 6 7 8 3: 9 10 4: 1 2 3 4 5 6 7 8 5: 1 2 3 4 5 6 7 8 6: 9 10 7: 1 2 3 4 5 6 7 8 8: 1 2 3 4 5 6 7 8 9: 9 10 10: 9 10 11: 11 12: 13 14 13: 12 14: 12 There are 4 SCCs. Processor output: { D2 = (P2, R UNION R_?, i, c) ; D3 = (P3, R UNION R_?, i, c) ; D4 = (P4, R UNION R_?, i, c) ; D5 = (P5, R UNION R_?, i, c) }, where: P2. (1) +#(+(V1, W1), P1) => +#(W1, P1) (2) +#(+(V1, W1), P1) => +#(V1, +(W1, P1)) P3. (1) *#(X, +(Y, U)) => *#(X, Y) (2) *#(X, +(Y, U)) => *#(X, U) (3) *#(+(W, P), V) => *#(V, W) (4) *#(+(W, P), V) => *#(V, P) (5) *#(*(X1, Y1), U1) => *#(Y1, U1) (6) *#(*(X1, Y1), U1) => *#(X1, *(Y1, U1)) P4. (1) map#(Z2, cons(U2, V2)) => map#(Z2, V2) P5. (1) filter#(J2, cons(X3, Y3)) => filter2#(J2(X3), J2, X3, Y3) (2) filter2#(true, G3, V3, W3) => filter#(G3, W3) (3) filter2#(false, J3, X4, Y4) => filter#(J3, Y4) ***** We apply the Subterm Criterion Processor on D2 = (P2, R UNION R_?, i, c). We use the following projection function: nu(+#) = 1 We thus have: (1) +(V1, W1) |>| W1 (2) +(V1, W1) |>| V1 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** No progress could be made on DP problem D3 = (P3, R UNION R_?, i, c).