We consider universal computability of the STRS with no additional rule schemes: Signature: 0 :: b add :: b -> c -> c app :: c -> c -> c false :: a filter :: (b -> a) -> c -> c filter2 :: a -> (b -> a) -> b -> c -> c high :: b -> c -> c if_high :: a -> b -> c -> c if_low :: a -> b -> c -> c le :: b -> b -> a low :: b -> c -> c map :: (b -> b) -> c -> c minus :: b -> b -> b nil :: c quicksort :: c -> c quot :: b -> b -> b s :: b -> b true :: a Rules: minus(X, 0) -> X minus(s(Y), s(U)) -> minus(Y, U) quot(0, s(V)) -> 0 quot(s(W), s(P)) -> s(quot(minus(W, P), s(P))) le(0, X1) -> true le(s(Y1), 0) -> false le(s(U1), s(V1)) -> le(U1, V1) app(nil, W1) -> W1 app(add(P1, X2), Y2) -> add(P1, app(X2, Y2)) low(U2, nil) -> nil low(W2, add(V2, P2)) -> if_low(le(V2, W2), W2, add(V2, P2)) if_low(true, Y3, add(X3, U3)) -> add(X3, low(Y3, U3)) if_low(false, W3, add(V3, P3)) -> low(W3, P3) high(X4, nil) -> nil high(U4, add(Y4, V4)) -> if_high(le(Y4, U4), U4, add(Y4, V4)) if_high(true, P4, add(W4, X5)) -> high(P4, X5) if_high(false, U5, add(Y5, V5)) -> add(Y5, high(U5, V5)) quicksort(nil) -> nil quicksort(add(W5, P5)) -> app(quicksort(low(W5, P5)), add(W5, quicksort(high(W5, P5)))) map(F6, nil) -> nil map(Z6, add(U6, V6)) -> add(Z6(U6), map(Z6, V6)) filter(I6, nil) -> nil filter(J6, add(X7, Y7)) -> filter2(J6(X7), J6, X7, Y7) filter2(true, G7, V7, W7) -> add(V7, filter(G7, W7)) filter2(false, J7, X8, Y8) -> filter(J7, Y8) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) minus#(s(Y), s(U)) => minus#(Y, U) (2) quot#(s(W), s(P)) => minus#(W, P) (3) quot#(s(W), s(P)) => quot#(minus(W, P), s(P)) (4) le#(s(U1), s(V1)) => le#(U1, V1) (5) app#(add(P1, X2), Y2) => app#(X2, Y2) (6) low#(W2, add(V2, P2)) => le#(V2, W2) (7) low#(W2, add(V2, P2)) => if_low#(le(V2, W2), W2, add(V2, P2)) (8) if_low#(true, Y3, add(X3, U3)) => low#(Y3, U3) (9) if_low#(false, W3, add(V3, P3)) => low#(W3, P3) (10) high#(U4, add(Y4, V4)) => le#(Y4, U4) (11) high#(U4, add(Y4, V4)) => if_high#(le(Y4, U4), U4, add(Y4, V4)) (12) if_high#(true, P4, add(W4, X5)) => high#(P4, X5) (13) if_high#(false, U5, add(Y5, V5)) => high#(U5, V5) (14) quicksort#(add(W5, P5)) => low#(W5, P5) (15) quicksort#(add(W5, P5)) => quicksort#(low(W5, P5)) (16) quicksort#(add(W5, P5)) => high#(W5, P5) (17) quicksort#(add(W5, P5)) => quicksort#(high(W5, P5)) (18) quicksort#(add(W5, P5)) => app#(quicksort(low(W5, P5)), add(W5, quicksort(high(W5, P5)))) (19) map#(Z6, add(U6, V6)) => map#(Z6, V6) (20) filter#(J6, add(X7, Y7)) => filter2#(J6(X7), J6, X7, Y7) (21) filter2#(true, G7, V7, W7) => filter#(G7, W7) (22) filter2#(false, J7, X8, Y8) => filter#(J7, Y8) ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, i, c). We compute a graph approximation with the following edges: 1: 1 2: 1 3: 2 3 4: 4 5: 5 6: 4 7: 8 9 8: 6 7 9: 6 7 10: 4 11: 12 13 12: 10 11 13: 10 11 14: 6 7 15: 14 15 16 17 18 16: 10 11 17: 14 15 16 17 18 18: 5 19: 19 20: 21 22 21: 20 22: 20 There are 9 SCCs. Processor output: { D2 = (P2, R UNION R_?, i, c) ; D3 = (P3, R UNION R_?, i, c) ; D4 = (P4, R UNION R_?, i, c) ; D5 = (P5, R UNION R_?, i, c) ; D6 = (P6, R UNION R_?, i, c) ; D7 = (P7, R UNION R_?, i, c) ; D8 = (P8, R UNION R_?, i, c) ; D9 = (P9, R UNION R_?, i, c) ; D10 = (P10, R UNION R_?, i, c) }, where: P2. (1) minus#(s(Y), s(U)) => minus#(Y, U) P3. (1) quot#(s(W), s(P)) => quot#(minus(W, P), s(P)) P4. (1) le#(s(U1), s(V1)) => le#(U1, V1) P5. (1) app#(add(P1, X2), Y2) => app#(X2, Y2) P6. (1) low#(W2, add(V2, P2)) => if_low#(le(V2, W2), W2, add(V2, P2)) (2) if_low#(true, Y3, add(X3, U3)) => low#(Y3, U3) (3) if_low#(false, W3, add(V3, P3)) => low#(W3, P3) P7. (1) high#(U4, add(Y4, V4)) => if_high#(le(Y4, U4), U4, add(Y4, V4)) (2) if_high#(true, P4, add(W4, X5)) => high#(P4, X5) (3) if_high#(false, U5, add(Y5, V5)) => high#(U5, V5) P8. (1) quicksort#(add(W5, P5)) => quicksort#(low(W5, P5)) (2) quicksort#(add(W5, P5)) => quicksort#(high(W5, P5)) P9. (1) map#(Z6, add(U6, V6)) => map#(Z6, V6) P10. (1) filter#(J6, add(X7, Y7)) => filter2#(J6(X7), J6, X7, Y7) (2) filter2#(true, G7, V7, W7) => filter#(G7, W7) (3) filter2#(false, J7, X8, Y8) => filter#(J7, Y8) ***** We apply the Subterm Criterion Processor on D2 = (P2, R UNION R_?, i, c). We use the following projection function: nu(minus#) = 1 We thus have: (1) s(Y) |>| Y All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** No progress could be made on DP problem D3 = (P3, R UNION R_?, i, c).