We consider universal computability of the STRS with no additional rule schemes: Signature: 0 :: a cons :: c -> c -> c copy :: a -> c -> c -> c f :: c -> c false :: b filter :: (c -> b) -> c -> c filter2 :: b -> (c -> b) -> c -> c -> c map :: (c -> c) -> c -> c n :: a nil :: c s :: a -> a true :: b Rules: f(cons(nil, X)) -> X f(cons(f(cons(nil, Y)), U)) -> copy(n, Y, U) copy(0, V, W) -> f(W) copy(s(P), X1, Y1) -> copy(P, X1, cons(f(X1), Y1)) map(G1, nil) -> nil map(H1, cons(W1, P1)) -> cons(H1(W1), map(H1, P1)) filter(F2, nil) -> nil filter(Z2, cons(U2, V2)) -> filter2(Z2(U2), Z2, U2, V2) filter2(true, I2, P2, X3) -> cons(P2, filter(I2, X3)) filter2(false, Z3, U3, V3) -> filter(Z3, V3) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) f#(cons(f(cons(nil, Y)), U)) => copy#(n, Y, U) (2) copy#(0, V, W) => f#(W) (3) copy#(s(P), X1, Y1) => f#(X1) (4) copy#(s(P), X1, Y1) => copy#(P, X1, cons(f(X1), Y1)) (5) map#(H1, cons(W1, P1)) => map#(H1, P1) (6) filter#(Z2, cons(U2, V2)) => filter2#(Z2(U2), Z2, U2, V2) (7) filter2#(true, I2, P2, X3) => filter#(I2, X3) (8) filter2#(false, Z3, U3, V3) => filter#(Z3, V3) ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, i, c). We compute a graph approximation with the following edges: 1: 2: 1 3: 1 4: 2 3 4 5: 5 6: 7 8 7: 6 8: 6 There are 3 SCCs. Processor output: { D2 = (P2, R UNION R_?, i, c) ; D3 = (P3, R UNION R_?, i, c) ; D4 = (P4, R UNION R_?, i, c) }, where: P2. (1) copy#(s(P), X1, Y1) => copy#(P, X1, cons(f(X1), Y1)) P3. (1) map#(H1, cons(W1, P1)) => map#(H1, P1) P4. (1) filter#(Z2, cons(U2, V2)) => filter2#(Z2(U2), Z2, U2, V2) (2) filter2#(true, I2, P2, X3) => filter#(I2, X3) (3) filter2#(false, Z3, U3, V3) => filter#(Z3, V3) ***** We apply the Subterm Criterion Processor on D2 = (P2, R UNION R_?, i, c). We use the following projection function: nu(copy#) = 1 We thus have: (1) s(P) |>| P All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D3 = (P3, R UNION R_?, i, c). We use the following projection function: nu(map#) = 2 We thus have: (1) cons(W1, P1) |>| P1 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D4 = (P4, R UNION R_?, i, c). We use the following projection function: nu(filter#) = 2 nu(filter2#) = 4 We thus have: (1) cons(U2, V2) |>| V2 (2) X3 |>=| X3 (3) V3 |>=| V3 We may remove the strictly oriented DPs. Processor output: { D5 = (P5, R UNION R_?, i, c) }, where: P5. (1) filter2#(true, I2, P2, X3) => filter#(I2, X3) (2) filter2#(false, Z3, U3, V3) => filter#(Z3, V3) ***** We apply the Graph Processor on D5 = (P5, R UNION R_?, i, c). We compute a graph approximation with the following edges: 1: 2: As there are no SCCs, this DP problem is removed. Processor output: { }.