We consider universal computability of the LCTRS with only rule scheme Calc: Signature: eval_1 :: Int -> Int -> Int -> o eval_2 :: Int -> Int -> Int -> o Rules: eval_1(x, y, z) -> eval_2(x, y, z) | x > z /\ y = y eval_2(x, y, z) -> eval_2(x, y - 1, z) | x > z /\ y > z eval_2(x, y, z) -> eval_1(x - 1, y, z) | x > z /\ z >= y The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) eval_1#(x, y, z) => eval_2#(x, y, z) | x > z /\ y = y (2) eval_2#(x, y, z) => eval_2#(x, y - 1, z) | x > z /\ y > z (3) eval_2#(x, y, z) => eval_1#(x - 1, y, z) | x > z /\ z >= y ***** We apply the Chaining Processor Processor on D1 = (P1, R UNION R_?, i, c). We chain DPs according to the following mapping: eval_2#(x, y, z) => eval_2#(x - 1, y, z) | x > z /\ z >= y /\ (x - 1 > z /\ y = y) is obtained by chaining eval_2#(x, y, z) => eval_1#(x - 1, y, z) | x > z /\ z >= y and eval_1#(x', y', z') => eval_2#(x', y', z') | x' > z' /\ y' = y' The following DPs were deleted: eval_2#(x, y, z) => eval_1#(x - 1, y, z) | x > z /\ z >= y eval_1#(x, y, z) => eval_2#(x, y, z) | x > z /\ y = y By chaining, we added 1 DPs and removed 2 DPs. Processor output: { D2 = (P2, R UNION R_?, i, c) }, where: P2. (1) eval_2#(x, y, z) => eval_2#(x, y - 1, z) | x > z /\ y > z (2) eval_2#(x, y, z) => eval_2#(x - 1, y, z) | x > z /\ z >= y /\ (x - 1 > z /\ y = y) ***** We apply the Graph Processor on D2 = (P2, R UNION R_?, i, c). We compute a graph approximation with the following edges: 1: 1 2 2: 2 There are 2 SCCs. Processor output: { D3 = (P3, R UNION R_?, i, c) ; D4 = (P4, R UNION R_?, i, c) }, where: P3. (1) eval_2#(x, y, z) => eval_2#(x - 1, y, z) | x > z /\ z >= y /\ (x - 1 > z /\ y = y) P4. (1) eval_2#(x, y, z) => eval_2#(x, y - 1, z) | x > z /\ y > z ***** We apply the Integer Function Processor on D3 = (P3, R UNION R_?, i, c). We use the following integer mapping: J(eval_2#) = arg_1 - arg_3 We thus have: (1) x > z /\ z >= y /\ (x - 1 > z /\ y = y) |= x - z > x - 1 - z (and x - z >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Integer Function Processor on D4 = (P4, R UNION R_?, i, c). We use the following integer mapping: J(eval_2#) = arg_2 - arg_3 We thus have: (1) x > z /\ y > z |= y - z > y - 1 - z (and y - z >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.