We consider universal computability of the LCTRS with only rule scheme Calc: Signature: eval_0 :: Int -> Int -> Int -> o eval_1 :: Int -> Int -> Int -> o Rules: eval_0(x, y, z) -> eval_1(x, y, z) | y > 0 /\ x = x /\ z = z eval_1(x, y, z) -> eval_1(x + y, y, z) | y > x /\ z > y /\ y > 0 eval_1(x, y, z) -> eval_1(x, y, x - y) | y > x /\ z > y /\ y > 0 The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) eval_0#(x, y, z) => eval_1#(x, y, z) | y > 0 /\ x = x /\ z = z (2) eval_1#(x, y, z) => eval_1#(x + y, y, z) | y > x /\ z > y /\ y > 0 (3) eval_1#(x, y, z) => eval_1#(x, y, x - y) | y > x /\ z > y /\ y > 0 ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, i, c). We compute a graph approximation with the following edges: 1: 2 3 2: 2 3 3: There is only one SCC, so all DPs not inside the SCC can be removed. Processor output: { D2 = (P2, R UNION R_?, i, c) }, where: P2. (1) eval_1#(x, y, z) => eval_1#(x + y, y, z) | y > x /\ z > y /\ y > 0 ***** We apply the Integer Function Processor on D2 = (P2, R UNION R_?, i, c). We use the following integer mapping: J(eval_1#) = arg_2 - arg_1 - 1 We thus have: (1) y > x /\ z > y /\ y > 0 |= y - x - 1 > y - (x + y) - 1 (and y - x - 1 >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.