We consider universal computability of the LCTRS with only rule scheme Calc: Signature: if :: Bool -> Int -> Int -> Int minus :: Int -> Int -> o minusNat :: Bool -> Int -> Int -> o round :: Int -> Int Rules: minus(x, y) -> minusNat(y >= 0 /\ x = y + 1, x, y) | x = x /\ y = y minusNat(true, x, y) -> minus(x, round(y)) | x = x /\ y = y round(x) -> if(x % 2 = 0, x, x + 1) | x = x if(true, u, v) -> u | u = u /\ v = v if(false, u, v) -> v | u = u /\ v = v The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) minus#(x, y) => minusNat#(y >= 0 /\ x = y + 1, x, y) | x = x /\ y = y (2) minusNat#(true, x, y) => round#(y) | x = x /\ y = y (3) minusNat#(true, x, y) => minus#(x, round(y)) | x = x /\ y = y (4) round#(x) => if#(x % 2 = 0, x, x + 1) | x = x ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, i, c). We compute a graph approximation with the following edges: 1: 2 3 2: 4 3: 1 4: There is only one SCC, so all DPs not inside the SCC can be removed. Processor output: { D2 = (P2, R UNION R_?, i, c) }, where: P2. (1) minus#(x, y) => minusNat#(y >= 0 /\ x = y + 1, x, y) | x = x /\ y = y (2) minusNat#(true, x, y) => minus#(x, round(y)) | x = x /\ y = y ***** We apply the Usable Rules Processor on D2 = (P2, R UNION R_?, i, c). We obtain 3 usable rules (out of 5 rules in the input problem). Processor output: { D3 = (P2, R2, i, c) }, where: R2. (1) if(true, u, v) -> u | u = u /\ v = v (2) if(false, u, v) -> v | u = u /\ v = v (3) round(x) -> if(x % 2 = 0, x, x + 1) | x = x ***** No progress could be made on DP problem D3 = (P2, R2, i, c).