We consider universal computability of the STRS with no additional rule schemes: Signature: mult :: N -> N -> N plus :: N -> N -> N s :: N -> N z :: N Rules: plus(z, X) -> X plus(s(Y), U) -> plus(Y, s(U)) plus(plus(V, W), P) -> plus(V, plus(W, P)) mult(z, X1) -> z mult(s(Y1), U1) -> plus(mult(Y1, U1), U1) mult(plus(V1, W1), P1) -> plus(mult(V1, P1), mult(W1, P1)) The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the initial DP problem D1 = (P1, R UNION R_?, i, c), where: P1. (1) plus#(s(Y), U) => plus#(Y, s(U)) (2) plus#(plus(V, W), P) => plus#(W, P) (3) plus#(plus(V, W), P) => plus#(V, plus(W, P)) (4) mult#(s(Y1), U1) => mult#(Y1, U1) (5) mult#(s(Y1), U1) => plus#(mult(Y1, U1), U1) (6) mult#(plus(V1, W1), P1) => mult#(V1, P1) (7) mult#(plus(V1, W1), P1) => mult#(W1, P1) (8) mult#(plus(V1, W1), P1) => plus#(mult(V1, P1), mult(W1, P1)) ***** We apply the Graph Processor on D1 = (P1, R UNION R_?, i, c). We compute a graph approximation with the following edges: 1: 1 2 3 2: 1 2 3 3: 1 2 3 4: 4 5 6 7 8 5: 1 2 3 6: 4 5 6 7 8 7: 4 5 6 7 8 8: 1 2 3 There are 2 SCCs. Processor output: { D2 = (P2, R UNION R_?, i, c) ; D3 = (P3, R UNION R_?, i, c) }, where: P2. (1) plus#(s(Y), U) => plus#(Y, s(U)) (2) plus#(plus(V, W), P) => plus#(W, P) (3) plus#(plus(V, W), P) => plus#(V, plus(W, P)) P3. (1) mult#(s(Y1), U1) => mult#(Y1, U1) (2) mult#(plus(V1, W1), P1) => mult#(V1, P1) (3) mult#(plus(V1, W1), P1) => mult#(W1, P1) ***** We apply the Subterm Criterion Processor on D2 = (P2, R UNION R_?, i, c). We use the following projection function: nu(plus#) = 1 We thus have: (1) s(Y) |>| Y (2) plus(V, W) |>| W (3) plus(V, W) |>| V All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }. ***** We apply the Subterm Criterion Processor on D3 = (P3, R UNION R_?, i, c). We use the following projection function: nu(mult#) = 1 We thus have: (1) s(Y1) |>| Y1 (2) plus(V1, W1) |>| V1 (3) plus(V1, W1) |>| W1 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. Processor output: { }.