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Abstract. Energy consumption in embedded systems plays a large role
as it has implications for the power supply and the batteries used. Pro-
grammers of these systems should consider how their programs control
external devices, and where energy consumption hotspots lie. We present
a static analysis to predict and visualize energy consumption of external
devices controlled by programs written in a simple imperative program-
ming language. Currently available energy consumption analysis tech-
niques generate graphs over time, which makes it difficult to see from
where in the source code the consumption originates. Our method gen-
erates graphs over source locations, called skyline diagrams, showing the
maximum power draw for each line of source code.
Our method harnessess symbolic execution extended with support for
controlling external devices. This gives accurate predictions and com-
plete code path coverage, as far as the limits of computability allow. To
make the diagrams easier to understand, we introduce a merge algorithm
that condenses all skylines into a concise overview. We demonstrate the
potential by analysing various example programs with our prototype im-
plementation. We envision this approach being used to identify energy
consumption hotspots of embedded systems during the design and de-
velopment phase, in a less involved way than traditional approaches.

Keywords: Symbolic execution · Program analysis · Energy use.

1 Introduction

Software that controls hardware is found in many places, such as washing ma-
chines, smartphones, or self-driving cars. The software running in such devices
is in charge of orchestrating the hardware components, like sensors, motors, dis-
plays, or radios. Formal analysis of such devices is hard, because hardware and
software have to be analysed together. In order to optimize energy consumption
of such devices, especially when they are battery-powered, it is useful for pro-
grammers to have a prediction of energy-behaviour of all the components when
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1 int main() {
2 x = SENS.readTemp();
3 if( x ≤ 10 ) {
4 LED1.switchOn();
5 } else {
6 LED2.switchOn();
7 }
8 sleep(100);
9 if( x < 10 ) {

10 LED1.switchOff();
11 } else {
12 LED2.switchOff();
13 }
14 return 0;
15 }
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Fig. 1. (a) Sensor input controls a lamp. (b) All possible runs of the program. One run
does not end at power draw zero, which indicates a bug.

running their program. Simulation or actual measurement of running devices can
give some insight, but only for one specific scenario and hardware configuration.

We develop a static analysis based on symbolic execution that can visualize
the energy behaviour of all possible executions of a program at once. This allows
programmers to quickly assess the energy impact of a change, already during
development. Our method is parametrized with hardware models, so that pro-
grammers can swap components and explore different hardware configurations.

In the domain of embedded systems and control software, the energy use of
the processor is sometimes negligible. We therefore limit our scope to the en-
ergy use of the hardware components controlled by the software. If desired, pro-
grammers can bypass this restriction by modelling the processor as a hardware
component and switching between its power states explicitly with corresponding
component calls. Modelling processors as a hardware components is possible, be-
cause they often have approximately constant energy consumption. For example
the popular ATmega328P, used on the Arduino UNO, has an amperage of 0.2
mA in Active Mode, 0.75 µA in Power-save Mode, and 0.1 µA in Power-down
Mode [21].

We illustrate our approach with an example. The program in fig. 1a reads
a sensor value, and switches on either LED1 or LED2. It has a bug in line 9,
where < is used instead of ≤ . There are three possible executions, one of which
does not end with a power draw of zero, as there exists a sensor value where
LED1 is not switched off. The skyline diagram in fig. 1b shows a merged view
of the three executions. The horizontal axis shows power draw, and the vertical
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axis line numbers. Skylines that would be drawn on top of each other are shifted
by a small offset. In this view, programmers can see that some component still
consumes energy at the end of the function, and can start investigating the issue.

This paper brings together two distinct lines of earlier work: the energy con-
sumption analysis by van Gastel et al. [10] and the skyline diagrams by Klinik et
al. [20]. Our contribution is threefold. First, we introduce a symbolic execution
engine that tracks hardware state and works with the programming language
SECA (Symbolic Energy Consumption Analysis). Second, we define visualiza-
tion rules for the results of the symbolic execution as diagrams of power draw
over points in the source code. Third, we define an algorithm to reduce the num-
ber of plotted graphs, hiding redundant information, to make the diagrams more
concise. Our proof-of-concept implementation is available online [3].

Remark. Our goal is to explore the idea of drawing energy skylines over
source lines; not (yet) to make an industry-ready tool. To focus on this goal,
our method considers a C-like language that lacks the complexity of C itself.
Likewise, the well-known problem of exponential state-space explosion, and re-
duction techniques that may be used to manage this problem, is not included
in our scope. Thus, we do not currently consider programs with thousands of
lines.

2 Methodology

Given a program in the SECA language (section 3), our system performs sym-
bolic execution to examine all possible execution paths. For each path, the sym-
bolic execution engine tracks the power draw of all components that the program
controls, resulting in a graph that relates program points to energy consumption
(section 4). We call such graphs skylines. The result of symbolic execution is a
set of skylines for every function, considering all calls to a function, across all ex-
ecution paths. Our system then condenses these skylines into a summary of the
energy behaviour of the program by merging common segments, to emphasize
where skylines differ (section 5). The merged skylines are rendered as skyline
diagrams, with line numbers on the vertical axis and power draw on the hori-
zontal axis. The paper ends with an analysis of a real-world example (section 6),
a discussion of related work (section 7) and ideas for future work (section 8).

Control software. Our domain is control software, whose main purpose is
to control hardware components like sensors or motors. It runs on embedded
systems using low powered microprocessors, which have a negligable energy use
compared to the software-controlled hardware. Control software has two key
characteristics. First, it has low algorithmic complexity. We aim to analyse pro-
grams that, for example, regulate a central heating installation, not those that
calculate square roots. Second, it contains statements that interact with hard-
ware components. These component calls are the focus of our system, as we seek
to find how their invocation influences the energy behaviour of the program. If
programs have parts with high algorithmic complexity, which would overextend
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the capabilities of symbolic execution, such parts could be hidden in library calls
and left out of the analysis.

SECA represents the behaviour of hardware components in a model similar
to the one in [10]; essentially a labelled transition system where every state has
a power draw, and state changes can only be initiated by the code.

Energy consumption. Resources other than power draw can also be modelled,
as long as they can be summed up. The analysis does not care; it sees resource
consumption as a unitless number. We assume that components have rectangular
power profiles, which means there is no ramp-up when switching them on.

Symbolic execution. Symbolic execution [18] is a program semantics that
traces all possible program execution paths. Whenever a program asks for input,
for example from a sensor or terminal, a symbolic input variable any i is created.
When conditionals are encountered, execution splits into two paths: one for
evaluating the condition to true, one to false. Each path is coupled with the
constraint on the symbolic inputs that must hold for this path to be followed.

To illustrate the idea, consider the program: x = TEMP.readInt(); if (x

<5) { y=7; } else { y=2*x+1; }. Symbolic execution results in two paths,
one through the then- and one through the else-branch. The first one terminates
with global state [x 7→ any0, y 7→ 7] and path constraint any0 < 5. The second
one terminates with [x 7→ any0, y 7→ 2any0+1] and path constraint ¬(any0 < 5).

Path constraints can be given to an SMT (satisfiability modulo theories)
solver, to prune infeasible paths, and calculate example values for the anys.

Symbolic execution does not terminate if there is a path that loops indefi-
nitely. To bypass this problem, our system exits loops after a pre-defined number
of iterations, and generates a warning. In such situations there could be paths
whose energy usage is not reported, and hence the analysis is unsound. How-
ever, due to the nature of symbolic execution, all possible energy behaviours of
a loop will often be discovered in less iterations than what is needed for the
behaviours to occur in concrete execution. We expect situations with missed
energy behaviours to be uncommon in typical programs.

Program points. In previous work [20] we analysed resource consumption
over time. This has several advantages, but does not clearly show which parts
of the program contribute to which parts of a skyline. Here, we give up the time
aspect and instead relate resource use directly to lines in the source code. This
requires certain coding conventions; for example, there may be only one non-
trivial expression or statement per line, and closing braces must be on their own
line. The results are diagrams with a natural control flow from top to bottom
with occasional jumps, which clearly relate parts of the program to their energy
consumption. Consider for example the program in fig. 2a. Symbolic execution
results in the two skylines in fig. 2b, which show the hotspots in lines 5 and 8.

Merging. Symbolic execution results in a set of skylines, one for every exe-
cution path. These skylines often have identical parts, only differing after or up
to a certain point. Sometimes a skyline is equal to a second one for a few lines
and then becomes equal to a third. This effect is common in loops, where a piece
of code is executed repeatedly. The program in fig. 2a has two execution paths
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1 int main() {
2 x =

TERM.readInt();
3 LED3.switchOn();
4 if( x ≤ 5 ) {
5 LED1.switchOn();
6 LED1.switchOff();
7 } else {
8 LED2.switchOn();
9 LED2.switchOff();

10 }
11 LED3.switchOff();
12 return 0;
13 }
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Fig. 2. (a) A program with two execution paths (b) Its skylines (c) Its merged skylines

that only differ during the execution of the conditional (lines 4–10). Figure 2c
shows its skylines after merging. Until line 4 they are drawn as a single skyline.
At line 4 is a split point, after which they are drawn separately. At line 11 they
come together again, and continue so until the end of the function.

Our system aims to give programmers an idea of the energy behaviour of
their programs, so that they gain insight where the hotspots lie. We argue that
for this goal it is not required that skyline diagrams convey all information about
all runs. Instead, we condense information such that unexpected spikes can be
clearly identified. This comes at the cost of information loss about the exact
number of runs, and losing the ability to fully trace individual runs.

3 The SECA Language

SECA (Symbolic Energy Consumption Analysis) is a small imperative program-
ming language. We designed SECA to look like a simple form of C, without
features like raw memory access and pointer arithmetic. Such features compli-
cate the analysis and are not the focus of this paper. We believe that with some
engineering effort, the analysis can be extended to support the style of C pro-
grams common in embedded and safety-critical systems. SECA is a variant of
ECA [11], which is itself a variant of Nielson’s While [22]. SECA programs can
control external hardware through component calls. For example, the compo-
nent call LED1.switchOn() invokes the switchOn functionality of the component
LED1. Component calls can perform I/O and have return values, but no ar-
guments. While it would be simple to allow arguments to the component calls
for the concrete component models, it would require signifcant changes to the
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e ::= true | false | i | x | e op e
| un e | id(e) | id .id()

op ::= && | || | ≤ | < | + | − | ∗
un ::= − | !
s ::= if(e) { s } else { s }

| while(e) { s } i
| x = e | return e | e

funcDef ::= id(x){ s }

Fig. 3. Abstract syntax of SECA

off/0 on/10

switchOn

switchOff

switchOnswitchOff

Fig. 4. Hardware component model for an
LED. In state on it has a power draw of 10,
in state off a power draw of 0. The transi-
tions correspond to component functions.

symbolic component models. This would complicate the symbolic execution. For
this paper we decided to keep this can of worms closed.

Assumptions. We provide no typing rules, but do require that programs are
well-typed in the usual sense. We assume that all code paths of a function end
in a return statement of the correct type, no references to undefined variables
occur, and programs run on devices with all occurring hardware components.
Void functions are allowed to end without return statements. In this case, the
execution engine inserts an implicit return statement.

3.1 Syntax

A program is a list of function- and global variable declarations. There must be
one function main. The abstract syntax of SECA is shown in fig. 3. Overlined
symbols stand for lists of that symbol; for example s is a list of statements.

Expressions are Boolean or integer constants, program variables, applica-
tions of binary or unary operators, function calls, and component calls. Oper-
ators are the usual Boolean connectives, comparisons and arithmetic. Function
calls have a list of expressions, the parameters. Component calls have the form
name.function() and invoke the specified function of the specified component.
Statements are conditionals, while loops, assignments, returns, or expressions.

While loops are annotated with a loop counter i, which the semantics uses to
limit loop iterations, and to draw skylines differently in the first loop iteration.
This is further discussed in section 3.2. The loop counter is not part of the
concrete syntax, the programmer cannot access it, and it is initialised with zero.
Assignments have a variable on the left hand side and an expression on the right
hand side. Return statements end the current function call, and yield the given
expression as the function’s return value.

3.2 Semantics

SECA comes with four semantics, for different purposes. The standard seman-
tics defines how programs are executed. The energy-aware semantics addition-
ally traces the energy consumption during program execution in a skyline. The
symbolic execution semantics executes all possible paths through a program. The
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energy-aware symbolic execution semantics traces all possible skylines a program
can produce. The focus of this paper is the last one; the others are formally de-
fined in a technical report [19]. Below, we will informally discuss the energy-aware
semantics, as it is a useful foundation to understand the energy-aware symbolic
execution semantics.

Components. To start, we must define the semantics of component calls. In
order to analyse the energy consumption of programs, we need an estimation of
how much energy their hardware components consume. Such an estimation is
called a hardware component model, or component model for short.

Component models are labelled transition systems, not necessarily finite,
where each state has a power draw. Transitions are labelled with component
functions (e.g. switchOn). Formally, a hardware component model 〈S,L, δ, o〉
consists of a set of states S, a finite set of labels L, a transition function
δ : L × S → IO(Z × S) and a power draw function o : S → N. A configura-
tion of a model is an element of S: the current state. Every component has a
start state. We borrow Haskell’s notation IO(Z×S) to indicate that to produce
the return value Z×S, the function may perform arbitrary I/O. Input-producing
hardware like sensors or terminals use the return value Z to return the input.
Actuators like motors should return 0. The power draw function o specifies how
much power the component consumes in each state.

Let us consider an example. A component model of an LED is shown in
fig. 4. LEDs have two states, on and off, and transitions switchOn and switchOff
between them. In the on state an LED has a power draw of 10, in the off state
it has a power draw of 0. The component functions do not return values.

SECA programs always run in contexts where a number of component models
are present. Such contexts are called component states, or CStates for short. A
CState is a partial mapping from names to configurations. If the CState contains
an LED, say under the name of LED1, programs in this context can contain the
component calls LED1.switchOn() and LED1.switchOff().

Skylines. The energy-aware semantics generates skylines. A skyline is a list
of segments. A segment is either a start point S(l, p) at line l and power draw
p, a forwards line F (l), a backwards jump J(l), or an edge E(p). Every skyline
has exactly one start point, which must be its first segment. Other segments are
interpreted relative to their predecessors.

The y-axis of a skyline refers to line numbers. Using line numbers to identify
program points requires the source code to be formatted so that every skyline-
producing program point is on its own line, to avoid segments being drawn over
each other. This concerns the left-hand side of assignments, if keywords, while
keywords, the closing brace of the body of while loops, return keywords, and the
closing parentheses of function- and component calls. Expressions that contain
function- or component calls as subexpressions should be split over multiple
lines. Even with these restrictions, segments may end up on top of each other
when the same lines of code are executed more than once.

The energy-aware standard semantics. We explain by example how the se-
mantics executes a program and constructs its skyline on the way. The program
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1 int main() {
2 x = 0;
3 while( x < 5 ) {
4 LED1.switchOn();
5 x = x + 1;
6 }
7 LED1.switchOff();
8 return 0;
9 }
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Fig. 5. Stepwise construction of a skyline (a) After switching on LED1 (b) After the
first loop iteration (c) After the second iteration (d) The final skyline

in fig. 5 switches LED1 on five times in a loop, and then switches it off. The
skyline fragments generated during execution are shown in fig. 6.

Execution of this program starts in a CState where LED1 is in state off.
Figure 5a shows the skyline just after executing line 4, where the LED has been

[S(1, 0), F (2), F (3), F (4), E(10), (a)
F (5), F (6), J(3), (b)
F (4), E(10), F (5), F (6), J(3), (c)
F (4), E(10), F (5), F (6), J(3),
F (4), E(10), F (5), F (6), J(3),
F (4), E(10), F (5), F (6), J(3),
F (7), E(0), F (8), F (9)] (d)

Fig. 6. Skyline fragments for fig. 5.

switched on. Lines 2 and 3 do not
change the power draw, which yields
two forward segments from line 1 to 2
and from line 2 to 3. LED1 is switched
on in line 4, which extends the skyline
with a forward segment from 3 to 4, fol-
lowed by a rising edge to power draw
10.

Figure 5b shows the skyline after
one loop iteration, when the loop con-
dition in line 3 has been executed a sec-
ond time. Line 5 has caused a forward
segment from 4 to 5. Execution of line
3 has caused a forward segment from the last statement of the loop in line 5 to
the closing brace of the loop in line 6, followed by a backwards jump to line 3,
which is not visible in the diagram.

Figure 5c shows the skyline after two iterations. The second iteration starts
at line 3 with power draw 10, and gives of three forward segments 3 to 4, 4 to 5,
and 5 to 6. None of them change the power draw, as the LED is already on. These
segments overlap with the segments of the previous iteration, and are drawn on
top of each other. All subsequent iterations also generate identical segments.

After five loop iterations, the program exits the loop, with the skyline shown
in fig. 5d. Switching off the LED generates a falling edge to power draw 0 in line
7. The return statement finally generates two forward segments, one for itself
from 7 to 8 and one for exiting the function from 8 to 9.
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4 Energy-Aware Symbolic Execution

The energy-aware symbolic execution semantics tracks path constraints and en-
ergy skylines for each execution path. The result is a set of skylines for each
function together with their path constraints.

In the symbolic semantics it is undesirable for component calls to perform
I/O, because exploring all execution paths causes component calls to be executed
multiple times. The symbolic semantics therefore uses component models where
component calls return symbolic values with constraints. Symbolic values SVal
are syntax trees whose leaves are constants or symbolic inputs any i (variables
that stand for an arbitrary integer). SVal is given by the grammar:

sv ::= true | false | i | any i | sv op sv | un sv

A symbolic component model 〈S,L, δ, o〉 consists of a set of states S, a finite
set of labels L, a transition function δ : L× S → SVal× SVal× S, and a power
draw function o : S → N. As opposed to the concrete models in section 3.2, δ can
not perform I/O. The first returned SVal of δ is typically a constant or symbolic
input, and the second is a constraint on that input. For example, where the
concrete model of TERM.readInt() asks for input and returns the user’s answer,
the symbolic model returns a fresh symbolic input anyj , with the constraint true,
as this input can be any integer. A temperature sensor in a cold room can return
a fresh anyj , together with a constraint 13 ≤ anyj∧anyj ≤ 17. A symbolic LED
returns constant 0, with the constraint true.

4.1 The Energy-Aware Symbolic Execution Semantics

We now study the algorithm that computes all possible executions of SECA
programs, together with their corresponding skylines. The algorithm records
skylines of each function separately. This results in one skyline for each function
call, for each execution path on which the call lies. The algorithm is defined
by case distinction on the abstract syntax. We present the whole algorithm in
figs. 7 and 8, but provide a detailed description only for a few clauses. A complete
description of the algorithm, as well as a formal definition of the semantics in the
style common in programming language research, can be found in the technical
report [19]. An implementation is available online [3].

Figures 7 and 8 show pseudocode for the functions E and S that compute
symbolic skylines for expressions and statements respectively. We elaborate on
some of the clauses below. Application of a function to syntactic arguments
is denoted with double brackets J−K, which have no further special meaning.
A program state σ ∈ Σ is a record with all information needed to execute
a statement. It contains the values of local program variables env and global
program variables genv, the current skyline sky, the current path constraint ϕ,
the program counter pc (a list of statements to be executed after the current
statement), the function call stack stack, and the CState cstate. The helper
functions lookup and assign (not shown here) ensure that the scoping rules are
respected, which means they prefer variables in env over genv.
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E : Expr×Σ → P(Val×Σ)

EJxK(σ) = { 〈lookup(x, σ), σ〉 } (1)

EJe1 op e2K(σ) = { 〈v1 op v2, σ
′′〉 (2)

| 〈v1, σ′〉 ∈ EJe1K(σ)

, 〈v2, σ′′〉 ∈ EJe2K(σ′) }
EJun eK(σ) = { 〈un v, σ′〉 (3)

| 〈v, σ′〉 ∈ EJeK(σ) }
EJf(e)K(σ) = (4)

{ 〈lookup(#return, σ′′′), σ′′′[pc 7→ σ.pc]〉
| 〈v, σ′〉 ∈ EJeK(σ)

, σ′′ = callJf(v)K(σ′[pc 7→ []])

, σ′′′ ∈ X (σ′′) }
EJc.f()K(σ) = { 〈v, σ′〉 } (5)

where

σ′ = σ[cstate 7→ cstate ′, sky 7→ sky ′

, ϕ 7→ ϕ′]

〈v, ψ, s′c〉 = δc(f, sc)

cstate ′ = σ.cstate[c 7→ s′c]

sc = σ.cstate[c]

p = powerDraw(cstate ′)

l = lineOfCompCall

sky ′ = σ.sky ++ [F (l), E(p)]

ϕ′ = σ.ϕ ∧ ψ

call : Expr×Σ → Σ

callJf(v)K(σ) = σ′ (6)

where

σ′ = σ[env 7→ env ′, sky 7→ sky ′, pc 7→ s

, stack 7→ stack ′]

env ′ = [x 7→ v]

p = powerDraw(σ.cstate)

l = lineOfOpeningBrace

sky ′ = [S(l, p)]

s = functionBodyJfK
stack ′ = push(σ, stack)

X : Σ → P(Σ)

X (σ) =


{σ } if σ.pc = []⋃
{X (σ′)

| σ′ ∈ SJsK(σ[pc 7→ rest ]) }
if σ.pc = [s] ++ rest

Fig. 7. The function E for expressions and
X to execute whole programs

S : Stmt×Σ → P(Σ)

SJx = eK(σ) = { assign(x , v , σ′) (1)

| 〈v, σ′〉 ∈EJeK(σ[sky 7→ σ.sky ++ [F (l)]])

where l = lineNumberOfAssignment }
SJif(e) { s1 } else { s2 }K(σ) =

⋃
{ (2)

{σ′[pc 7→ pc1, ϕ 7→ ϕ1]

, σ′[pc 7→ pc2, ϕ 7→ ϕ2] }
| 〈v, σ′〉 ∈ EJeK(σ[sky 7→ σ.sky ++ [F (l)]])

where

l = lineOfIfKeyword

ϕ1 = σ′.ϕ ∧ v
ϕ2 = σ′.ϕ ∧ ¬v
pc1 = s1 ++ σ′.pc

pc2 = s2 ++ σ′.pc }
SJwhile(e) { s } iK(σ) =

⋃
{ (3)

{σ′[pc 7→ loop, ϕ 7→ ϕ1], σ′[ϕ 7→ ϕ2] }
| 〈v, σ′〉 ∈ EJeK(σ[sky 7→ sky ′])

where

ϕ1 = σ′.ϕ ∧ v
ϕ2 = σ′.ϕ ∧ ¬v

sky ′ =

{
σ.sky ++ [F (l)] if i = 0
σ.sky ++ [F (m), J(l)] otherwise

loop = s++ [while(e){s}(i+ 1)] ++ σ′.pc

l = lineOfWhileKeyword

m = lineOfClosingBrace }
SJreturn eK(σ) = (4)

{ registerSkyline(f, sky ′′, σ′′)

| 〈v, σ′〉 ∈ EJeK(σ[sky 7→ sky ′])

where

sky ′ = σ.sky ++ [F (l)]

sky ′′ = σ′.sky ++ [F (m)]

sky ′
c = σc.sky ++ [F (n), E(p)]

〈σc, stackc〉 = pop(σ.stack)

σ′′ = σ′[env 7→ σc.env [#return 7→ v]

, pc 7→ σc.pc, sky 7→ sky ′
c, stack 7→ stackc]

l = lineOfReturnKeyword

m = lineOfClosingBrace

n = lineOfCallSite

p = powerDraw(σ′) }
SJeK(σ) = {σ′ | 〈v, σ′〉 ∈ EJeK(σ) } (5)

Fig. 8. The function S for statements
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Each clause of the semantics specifies how a single statement or expression
together with a given program state produces the set of all possible immediate
successor program states. Hence, a statement can be seen as a state transformer
Σ → P(Σ). To compose two functions of this type, we need glue code that applies
the second function to every result of the first function. This is implemented by
the function X in fig. 7, which executes whole programs.

4.2 Evaluation of Expressions

The evaluation function E (fig. 7) takes an expression e and a program state
and returns the set of all possible values that e can evaluate to, together with
the updated program states. Clauses (1) and (3) are not explained here.

Clause (2): To evaluate a binary operator, all possible values v1 for e1, and
all possible values for e2 are calculated. The evaluation of e2 happens in the
result state of the evaluation of e1. The result is the set of the symbolic values
v1op v2 for all combinations (v1, v2). These values are subject to constant folding
(e.g. 1 + 2 becomes 3), which is not shown here.

Clause (4): To evaluate a function call, first all arguments are evaluated.
This is done by the sequential extension E , which chains the state through the
evaluation of the argument vector e and results in the set of all possible value
vectors v. For each vector v, the helper function call , described below, prepares
the function call, and X executes it. This execution will eventually end with a
return statement. The return statement restores the program state so that σ′′′

can be used as the result state at the call site. The resulting value of the function
call is the value of the #return register in σ′′′.

Clause (5): To evaluate a component call, first the transition function δc
of the component c is invoked, with the function name f and the component’s
current state sc as arguments. This yields a return value v, a constraint ψ on v,
and a new component state s′c. The total power draw p after the call is computed.
The skyline is extended with a forward segment F (l) to the location l of the call
site, followed by an edge E(p) to the new power draw. The result of evaluating
c.f() is the return value v of δc, together with the updated program state.

Clause (6): The helper function call prepares the program state for execution
of the function. It first initializes the environment env ′ for the function body
with the actual arguments. It then starts a new skyline for the call to f with
the current power draw p at the location l of the opening brace of the function
definition of f . It uses the function body s as program counter, and creates a
new stack frame for the function call.

4.3 Execution of Statements

The function X (fig. 7) recursively executes all statements of the program counter
σ.pc, and collects the results. Execution of a SECA program starts in a program
state that contains the body of the main function as program counter.

The function S (fig. 8) executes a single statement in a given program state,
and returns all possible successor program states.
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Clause (1): Assignments are executed by first extending the current skyline
to the line of the assignment. Then e is evaluated to all its possible values, and
the final results are all successor states where x has value v. Expressions can
have side effects, so the successor states may have different skylines.

Clause (2): Execution of conditionals starts with extending the current sky-
line with a forward segment F (l) to the line l of the if keyword. Then, all
possible values v of the condition e are computed. This results in paths into
both branches, for each v. The path constraint for the then branch is extended
with v, for the else branch with ¬v. The program counter pc1 specifies that first
the statements s1 of the then branch are executed, and after that the original
continuation σ′.pc. Similarly for the else branch. If the SMT solver sees that ϕ1

or ϕ2 is unsatisfiable, their states are pruned (not shown here).

Clause (3): For the first iteration of while loops, we need to generate a
different skyline than for subsequent iterations. The first loop iteration can be
recognized by the loop counter i being 0. If this is the case, the current skyline
comes from outside the loop body, and we extend it with a forward segment
F (l) to the line of the while keyword. Otherwise, the current skyline comes from
inside the loop body, and is extended with a forward segment F (m) to the line
m of the closing brace, followed by a backwards jump J(l) to the beginning of
the loop. In both cases, the condition e is evaluated to all possible values v.
For every v, we generate two continuations: one for entering the loop with path
constraint σ′.ϕ ∧ v and one for exiting the loop with constraint σ′.ϕ ∧ ¬v. The
program counter loop for entering the loop consists of the loop body s, followed
by the loop itself with incremented loop counter, then by what comes after the
loop σ′.pc. The program counter for exiting needs no change, as σ′.pc already
contains the instructions following the loop. Our implementation uses the loop
counter to bound the number of iterations. This is not shown here.

Clause (4): The clause for return statements is more complicated than the
others, as it has to deal with two different skylines: the one from the function that
is about to return, and the one from the caller. Let f be the name of the current
function. To execute a return statement, the current skyline is first extended
with F (l) to the location l of the return keyword. Then, the returned expression
is evaluated. Next the skyline is extended with F (m), to the location m of the
closing brace of the function body. Then, the program state from before the
function call is restored, but updated with all the changes made by f . For this,
the topmost element σc of the call stack is removed; this is the program state of
the caller. A new state σ′′ is constructed, which the caller should use to resume
execution; σ′′ has the caller’s original env , but with the #return register holding
the return value. The program counter and call stack are restored to the ones
from before the call. The caller’s skyline σc.sky is extended with a forward line
F (n) to the call site, and an edge E(p) to the power draw p. Finally, the skyline
of the function call is recorded in the list of all skylines of f . This is done with
the function registerSkyline, which stores the given skyline in the given state,
and returns the thus updated state.
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1 int main() {
2 x = TERM.readInt();
3 while(0 ≤ x && x ≤ 2){
4 y = TERM.readInt();
5 while(0 ≤ y && y ≤ 2){
6 LED1.switchOn();
7 LED1.switchOff();
8 y = y + 1;
9 }

10 LED2.switchOn();
11 LED2.switchOff();
12 x = x + 1;
13 }
14 return 0;
15 }
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Fig. 9. A program with many execution paths, and its unmerged and merged skylines.

5 Merging Skylines

The skylines of a program often have many identical parts. Take for example the
program in fig. 9. Most of its execution paths have identical energy behaviour.
To merge skylines, we use a three-phase algorithm: preparation, merging and
finalization. It is executed independently for every function.

procedure Colourize(frags)
for i← 1 to Nfrags do
if (i > 1)∧(i ∈ frags[i−1].conts)∧
(frags[i − 1].end = frags[i].start)

then
colour [i]← colour [i− 1]

else
colour [i]← a fresh colour

end if
end for

end procedure

Fig. 10. Assigning colours

Preparation. First all skylines are
split into fragments and stored in
an array, giving each a unique in-
dex. Fragments represent single hor-
izontal or vertical lines with explicit
start and end points. Every fragment
has a set of continuations: indexes of
the fragments that follow it. Merg-
ing deletes explicit jumps J(l): they
are kept implicitly as fragments whose
start point does not coincide with the
end point of their predecessor. Ini-
tially each fragment has at most one
continuation, but more may be added
later. Preparation is shown in fig. 11.

Merging. Whenever two frag-
ments indexed i and j are equal, we
can merge them by first combining their continuations, and then replacing all
occurrences of j in continuations of other fragments by i. This is formally de-
scribed by fig. 12.
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procedure Prepare(skies(f))
// input: all skylines of function f
// output: frags, an array of fragments,
// each with at most one continuation
Nfrags ← 0
for all Skyline sky ∈ skies(f) do

// all skylines begin with S(l,p)
let 〈l, p〉 be such that sky [1] = S(l, p)
for i← 2 to length(sky) do

sky [i] is either F (l′) or J(l′) or E(p′)
in the first two cases, let p′ = p
in the last case, let l′ = l
if sky [i] is F (l′) or E(p′) then

Nfrags ← Nfrags + 1
frags[Nfrags].start ← 〈l, p〉
frags[Nfrags].end ← 〈l′, p′〉
frags[Nfrags−1].conts ← {Nfrags }

end if
〈l, p〉 ← 〈l′, p′〉

end for
// last fragment has no continuation
frags[Nfrags].conts ← ∅

end for
end procedure

Fig. 11. Initializing the frags array

procedure Merge(frags,Nfrags)
// frags, Nfrags as produced by prepare
// output: modified frags with equal
// fragments merged
for i← 1 to Nfrags − 1 do
if frags[i] = null then continue
for j ← i+ 1 to Nfrags do
if frags[j] = null
or frags[i].start 6= frags[j].start
or frags[i].end 6= frags[j].end
then continue

frags[i].conts ←
frags[i].conts ∪ frags[j].conts

frags[j]← null
for k ← 1 to Nfrags do
if frags[k] 6= null ∧
j ∈ frags[k].conts then

frags[k].conts ←
(frags[k].conts \ { j }) ∪ { i }

end if
end for

end for
end for

end procedure

Fig. 12. Merging fragments

Visualization. Finally, fragments are grouped into skylines, by assigning the
same colour to directly connected fragments. Figure 10 implements this. It then
assigns a small diagonal offset to each colour group (not shown here), to avoid
drawing lines on top of each other.

Statement markers. Between two consecutive horizontal lines, a + indi-
cates that a statement was executed at that point. Continuations are drawn as
coloured bullets or circles: if j ∈ frags[i].conts and colour [i] 6= colour [j], then
if frags[i].end = frags[j].start then a bullet in colour [j] is drawn at the end of
fragment i. Otherwise, the continuation is a jump backwards; this is indicated
by drawing an open circle in colour [j] at the end of fragment i. Dotted lines in
the diagram indicate the beginning and end points of loops.

6 A Real-World Example: Line-Following Robot

In this section we demonstrate how to apply our analysis to an existing real-world
example, written in C. The program is simple enough that there is no potential
for energy consumption optimization, but nonetheless our analysis gives insight
into the program’s energy behaviour.

We chose a random “simple line follower” project from the Arduino project
database [1]. This robot has two motors and two sensors, and uses them to
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1 int main() {
2 while( true ) {
3 loop();
4 }
5 return 0;
6 }
7 void loop(){
8 if((SensorLeft.read()==LOW) &&
9 (SensorRight.read()==LOW)) {

10 MoveForward();
11 }
12 if((SensorLeft.read()==HIGH) &&
13 (SensorRight.read()==HIGH)) {
14 Stop();
15 }
16 if((SensorLeft.read()==LOW) &&
17 (SensorRight.read()==HIGH)) {
18 TurnLeft();
19 }
20 if((SensorLeft.read()==HIGH) &&
21 (SensorRight.read()==LOW)) {
22 TurnRight();
23 }
24 }
25 void MoveForward() {
26 MotorLeft.Forward();
27 MotorRight.Forward();
28 delay(20);
29 }

Fig. 13. Excerpt of line follower program
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Fig. 14. Diagrams for loop (top)
and MoveForward (bottom)

follow a black line on the floor. It works as follows. The sensors are positioned
to the left and right of the line. If only the left sensor sees the line, the robot
turns left. Symmetrically for the right sensor. If neither sensor sees the line, the
robot moves forward. If both sensors see the line, the robot stops. The code has
potential for refactoring, as it contains unnecessary repetition. However our goal
was not to find the most elegant line follower robot, but to apply our method to
a real-world example.

The original source code, written in C, is almost valid SECA. We made two
changes to the code for our parser to accept it. First, we defined the constants LOW
and HIGH, and the function delay, which for our purpose is empty. Second, we
replaced the statements that write to output pins and read from input pins with
component calls. Figure 13 shows an excerpt of the code after these adjustments.

We then created the component models for motors and sensors in the source
code of our analysis engine. The simulated motors have three states, forward,
backward, and stop, and corresponding component calls. In the forward and
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backward states, motors have a power draw of 750mW. The sensors have no
power draw, and their read component call returns a symbolic value in {0, 1}.

Analysis results. Figure 14 shows skyline diagrams for the functions loop
(top) and MoveForward (bottom). The diagram for MoveForward illustrates
that the function has two behaviours. One where the power draw increases in
two steps from 0 to 1500 mW, and one where the power draw stays constant at
1500 mW. The functions TurnLeft and TurnRight, not shown here, look similar.
The function Stop, also not shown, has the opposite behaviour: the power draw
decreases in two steps. The function loop has many behaviours, depending on
the executed conditional. There are the cases where the power draw stays 0 or
1500 mW, or it can increase in lines 10, 18, or 22, or it can decrease in line 14.

Discussion. The function loop has high complexity for symbolic execution.
We had to set the iteration limit to 2 for the analysis to terminate within 20
seconds on a ten year old laptop. The merged diagram would not change with
more iterations. The high complexity occurs because firstly the four conditionals
can be entered independently, and secondly the sensors are read in each condi-
tion, making the conditionals not mutually exclusive. This results in 16 possible
executions of the function. Refactoring the program either by reading the sensors
once at the start of loop() or by nesting the conditionals, reduces the number
of possible executions to 4, making the analysis terminate in 2.4 seconds with
iteration limit 2. An improved version of the robot program together with its
skyline diagrams can be found on the project website [2].

7 Related Work

Directly related are the second author’s previous works [11,16] describing static
energy analyses for the language ECA. The first derives energy bounds for a
specific input scenario; the second is a symbolic analysis that over-approximates
all possible paths. These works do not use skylines. They do use hardware models
that also support incidental one-time energy costs. This incidental energy cost
can be useful for approximating energy consumption that varies over time. Also
closely related is the first author’s previous work [20], which introduces skylines
but also an overapproximation since it estimates resource use over time.

Most publications on energy efficiency of software approach the problem on a
high level, defining programming and design patterns for writing energy-efficient
code; see, e.g., [4,24,26]. In [9] and [25], a program is divided into phases describ-
ing similar behaviour. Based on the behaviour of the software, design-level op-
timizations are proposed to achieve lower energy consumption. Petri-net-based
energy modelling techniques for embedded systems are proposed in [14,23].

A general analysis for resource consumption is described in [17]. There are
generic resource consumption analyses, built on techniques such as solving re-
currence relations [5], amortized analysis [12], separation logic [7], and a Vienna
Development Method style program logic [6]. Contrary to these approaches, our
method has an explicit hardware model and a context in the form of component
states. This enables the inclusion of state-dependent energy consumption.
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In [13] and [15] energy consumption of the processor running embedded soft-
ware is analysed for specific architectures (SimpleScalar in [13], and XMOS ISA-
level models in [15]), while our approach is hardware-parametric and focuses on
external hardware. Several tools perform a static analysis of the energy con-
sumption of the CPU based on per-instruction measurements, such as in [27,8].

8 Discussion and Future Work

This article proposes a new approach for visualizing the energy consumption
of a system with external hardware without actually running the software or
having a real test setup. The result is presented as skyline diagrams with a direct
link to the source code, using line numbers. This visualization is generated by
symbolic execution, followed by a merging algorithm to deal with the explosion
of possible execution paths. There are few restrictions on the models of hardware
components, allowing a user to model a wide variety of hardware components.

We have implemented all techniques of this article in Haskell as a proof
of concept, using the Z3 SMT library to prune infeasible paths. Every skyline
diagram in this paper and on the project website [2] was computed by this tool
in a few seconds on a ten year old laptop. However, since symbolic execution has
exponential complexity, it would only take a couple of nested loops containing
component calls for the analysis to no longer be computed in feasible time.

The focus of this paper is on a minimal implementation, to explore the idea of
drawing graphs over source lines. A larger case study using the implementation
could result in useful feedback on how the process can be applied in practice. This
case study should evaluate if programmers get feedback they can use, and if there
is a practical need to use another technique instead of, or alongside, bounded
symbolic execution. In particular, our visualization should lend itself well to
abstract interpretation, which can be an alternative to symbolic execution. This
would require incorporating parts of the merging algorithm into the abstract
interpretation. A combination of symbolic execution and abstract interpretation
would be more complex, but could provide powerful tooling.

Editor integration can improve usability, for instance by annotating or over-
laying the source code with diagrams. It may also be useful to offer an interactive
visualization that allows developers to explore skylines and recover information
about individual execution paths, highlighting the relevant code.

Finally, our approach could track other resources. A similar methodology
could be used to visualize memory usage, or even time. Incidental, one time,
energy consumption of hardware component calls could also be relevant to show.
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