
On Basic Feasible Functionals
and the Interpretation Method⋆

Patrick Baillot1 , Ugo Dal Lago2 , Cynthia Kop3 , and Deivid Vale4

1 Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France,
patrick.baillot@univ-lille.fr

2 University of Bologna & INRIA Sophia Antipolis, ugo.dallago@unibo.it
3 Radboud University Nijmegen, c.kop@cs.ru.nl

4 Radboud University Nijmegen, deividvale@cs.ru.nl

Abstract. The class of basic feasible functionals (BFF) is the analog of FP
(polynomial time functions) for type-2 functionals, that is, functionals that
can take (first-order) functions as arguments. BFF can be defined through
Oracle Turing machines with running time bounded by second-order
polynomials. On the other hand, higher-order term rewriting provides an
elegant formalism for expressing higher-order computation. We address
the problem of characterizing BFF by higher-order term rewriting. Various
kinds of interpretations for first-order term rewriting have been introduced
in the literature for proving termination and characterizing (first-order)
complexity classes. In this paper, we consider a recently introduced
notion of cost–size interpretations for higher-order term rewriting and
see definitions as ways of computing functionals. We then prove that the
class of functionals represented by higher-order terms admitting a certain
kind of cost–size interpretation is exactly BFF.

Keywords: Basic Feasible Functions · Higher-Order Term Rewriting ·
Tuple Interpretations · Computational Complexity

1 Introduction

Computational complexity classes, and in particular those relating to polynomial
time and space [20,11] capture the concept of a feasible problem, and as such
have been scrutinized with great care by the scientific community in the last
fifty years. The fact that even apparently simple problems, such as nontrivial
separation between those classes, remain open today has highlighted the need for
a comprehensive study aimed at investigating the deep nature of computational
complexity. The so-called implicit computational complexity [8,30,33,13,4] fits
into this picture, and is concerned with characterizations of complexity classes
based on tools from mathematical logic and the theory of programming languages.
⋆ This work is supported by the NWO TOP project “Implicit Complexity through

Higher-Order Rewriting”, NWO 612.001.803/7571, the NWO VIDI project “Con-
strained Higher-Order Rewriting and Program Equivalence”, NWO VI.Vidi.193.075,
and the ERC CoG “Differential Program Semantics”, GA 818616.

http://orcid.org/0009-0002-9364-1140
http://orcid.org/0000-0001-9200-070X
http://orcid.org/0000-0002-6337-2544
http://orcid.org/0000-0003-1350-3478

2 P. Baillot et al.

One of the areas involved in this investigation is certainly that of term rewrit-
ing [34], which has proved useful as a tool for the characterization of complexity
classes. In particular, the class FP (i.e., of polytime first-order functions) has been
characterized through variations of techniques originally introduced for termi-
nation, e.g., the interpretation method [31,29], path orders [15], or dependency
pairs [16]. Some examples of such characterizations can be found in [7,9,10,1,3].

After the introduction of FP, it became clear that the study of computational
complexity also applies to higher-order functionals, which are functions that
take not only data but also other functions as inputs. The pioneering work of
Constable [12], Mehlhorn [32], and Kapron and Cook [22] laid the foundations of
the so-called higher-order complexity, which remains a prolific research area to
this day. Some motivations for this line of work can be found e.g. in computable
analysis [24], NP search problems [6], and programming language theory [14].

There have been several proposals for a class of type-two functionals that
correctly generalizes FP. However, the most widely accepted one is the class BFF
of basic feasible functionals. This class can be characterized based on function
algebras, similar to Cobham-style, but it can also be described using Oracle
Turing machines. The class BFF was then the object of study by the research
community, which over the years has introduced a variety of characterizations,
e.g., in terms of programming languages with restricted recursion schemes [21,14],
typed imperative languages [17,18], and restricted forms of iteration in OTMs [23].
An investigation of higher-order complexity classes employing the higher-order
interpretation method (in the context of a pure higher-order functional language)
was also proposed in [19]. However, this paper does not provide a characterization
of the standard BFF class. Instead, it characterizes a newly proposed class SFF2
(Safe Feasible Functionals) which is defined as the restriction of BFF to argument
functions in FP (see Sect. 4.2 and the conclusion in [19]).

The studies cited above present structurally complex programming languages
and logical systems, precisely due to the presence of higher-order functions. It is
not currently known whether it is possible to give a characterization of BFF in
terms of mainstream concepts of rewriting theory, although the latter has long
been known to provide tools for the modeling and analysis of functional programs
with higher-order functions [25].

This paper goes precisely in that direction by showing that the interpretation
method in the form studied by Kop and Vale [27,26] provides the right tools to
characterize BFF. More precisely, we consider a class of higher-order rewriting
systems admitting cost–size tuple interpretations (with some mild upper-bound
conditions on their cost and size components) and show that this class contains
exactly the functionals in BFF. Such a characterization could not have been
obtained employing classical integer interpretations as e.g. in [9] because BFF

crucially relies on some conditions both on size and on time. This is the main
contribution of our paper, formally stated in Theorem 2.

We believe that a benefit of this characterization is that it opens the way
to effectively handling programs or executable specifications implementing BFF

functions, in full generality. For instance, we expect that such a characterization

On Basic Feasible Functionals and the Interpretation Method 3

could be integrated into rewriting-based tools for complexity analysis of term
rewriting systems such as e.g. [2].

Our result is proved in two parts. We first prove that if any term rewriting
system in this class computes a higher-order functional, then this functional has
to be in BFF (soundness). Conversely, we prove that all functionals in BFF are
computed by this class of rewriting systems (completeness). We argue that the
key ingredient towards achieving this characterization is the ability to split the
dual notions of cost and size given by the usage of tuple interpretations.

2 Preliminaries

2.1 Higher-Order Rewriting

We roughly follow the definition of simply-typed term rewriting system [28]
(STRS): terms are applicative, and we limit our interest to second-order STRSs
where all rules have base type. Reductions follow an innermost evaluation strategy.

Let B be a nonempty set whose elements are called base types and range
over ι, κ, ν. The set T(B) of simple types over B is defined by the grammar
T(B) := B | T(B) ⇒ T(B). Types from T(B) are ranged over by σ, τ, ρ. The ⇒
type constructor is right-associative, so we write σ ⇒ τ ⇒ ρ for (σ ⇒ (τ ⇒ ρ)).
Hence, every type σ can be written as σ1 ⇒ · · · ⇒ σn ⇒ ι. We may write such
types as σ⃗ ⇒ ι. The order of a type is: ord(ι) = 0 for ι ∈ B and ord(σ ⇒ τ) =
max(1 + ord(σ), ord(τ)). A signature F is a triple (B, Σ, typeOf) where B is a
set of base types, Σ is a nonempty set of symbols, and typeOf : Σ −→ T(B). For
each type σ, we assume given a set Xσ of countably many variables and assume
that Xσ ∩ Xτ = ∅ if σ ̸= τ . We let X denote ∪σXσ and assume that Σ ∩ X = ∅.

The set T(F,X) — of terms built from F and X — collects those expressions
s for which a judgment s : σ can be deduced using the following rules:

x ∈ Xσ(ax) x : σ
f ∈ Σ typeOf(f) = σ

(f-ax)
f : σ

s : σ ⇒ τ t : σ
(app)

(s t) : τ

As usual, application of terms is left-associative, so we write s t u for ((s t)u). Let
vars(s) be the set of variables occurring in s. A term s is ground if vars(s) = ∅.
The head symbol of a term f s1 · · · sn is f. We say t is a subterm of s (written s ⊵ t)
if either (a) s = t, or (b) s = s′ s′′ and s′ ⊵ t or s′′ ⊵ t. It is a proper subterm of
s if s ̸= t. For a term s, pos(s) is the set of positions in s: pos(x) = pos(f) = {♯}
and pos(s t) = {♯} ∪ {1 · u | u ∈ pos(s)} ∪ {2 · u | u ∈ pos(t)}. For p ∈ pos(s),
the subterm s|p at position p is given by: s|♯ = s and (s1 s2)|i·p = si|p.

In this paper, we require that for all f ∈ Σ, ord(typeOf(f)) ≤ 2, so w.l.o.g.,
f : (⃗ι1 ⇒ κ1) ⇒ · · · ⇒ (⃗ιk ⇒ κk) ⇒ ν1 ⇒ · · · ⇒ νl ⇒ ι. Hence, in a fully applied
term f s1 . . . sk t1 . . . tl we say the si are the arguments of type-1 and the tj are
the arguments of type-0 for f. A substitution γ is a type-preserving map from
variables to terms such that {x ∈ X | γ(x) ̸= x} is finite. We extend γ to terms
as usual: xγ = γ(x), fγ = f, and (s t)γ = (sγ) (tγ). A context C is a term with a
single occurrence of a variable □; the term C[s] is obtained by replacing □ by s.

4 P. Baillot et al.

A rewrite rule ℓ→ r is a pair of terms of the same type such that ℓ = f ℓ1 · · · ℓm
and vars(ℓ) ⊇ vars(r). It is left-linear if no variable occurs more than once in
ℓ. A simply-typed term rewriting system (F,R) is a set of rewrite rules R over
T(F,X). In this paper, we require that all rules have base type. An STRS is
innermost orthogonal if all rules are left-linear, and for any two distinct rules
ℓ1 → r1, ℓ2 → r2, there are no substitutions γ, δ such that ℓ1γ = ℓ2δ. A reducible
expression (redex) is a term of the form ℓγ for a rule ℓ→ r and substitution γ.
The innermost rewrite relation induced by R is defined as follows:
• ℓγ →R rγ, if ℓ→ r ∈ R and ℓγ has no proper subterm that is a redex;
• s t→R u t, if s→R u and s t→R s u, if t→R u.

We write →+
R for the transitive closure of →R. An STRS R is innermost terminat-

ing if no infinite rewrite sequence s→R t→R . . . exists. It is innermost confluent
if s →+

R t and s →+
R u implies that some v exists with t →+

R v and u →+
R v.

It is well-known that innermost orthogonality implies innermost confluence. In
this paper, we will typically drop the “innermost” adjective and simply refer to
terminating/orthogonal/confluent STRSs.

Example 1. Let B = {nat} and 0 : nat, s : nat ⇒ nat, add,mult : nat ⇒ nat ⇒ nat,
and funcProd : (nat ⇒ nat) ⇒ nat ⇒ nat ⇒ nat. We then let R be given by:

add 0 y → y add (sx) y → s (addx y)
mult 0 y → 0 mult (sx) y → add y (multx y)

funcProdF 0 y → y funcProdF (sx) y → funcProdF x (mult y (F x))

Hereafter, we write ⌜n⌝ for the term s (s (. . . 0 . . .)) with n ss.

2.2 Cost–Size Interpretations

For sets A and B, we write A −→ B for the set of functions from A to B. A quasi-
ordered set (A,⊒) consists of a nonempty set A and a reflexive and transitive
relation ⊒ on A. For quasi-ordered sets (A1,⊒1) and (A2,⊒2), we write A1 =⇒ A2

for the set of functions f ∈ A1 −→ A2 such that f(x) ⊒2 f(y) whenever x ⊒1 y,
i.e., A1 =⇒ A2 is the space of functions that preserve quasi-ordering.

For every ι ∈ B, let a quasi-ordered set (Sι,⊒ι) be given. We extend this to
T(B) by defining Sσ⇒τ = (Sσ =⇒ Sτ ,⊒σ⇒τ) where f ⊒σ⇒τ g iff f(x) ⊒τ f(x)
for any x ∈ Sσ. Given a function J s mapping f ∈ Σ to some J s

f ∈ StypeOf(f) and a
valuation α mapping x ∈ Xσ to Sσ, we can map each term s : σ to an element of
Sσ naturally as follows: (a) JxKsα = α(x); (b) JfKsα = J s

f ; (c) Js tKsα = JsKsα(JtK
s
α).

For every type σ with ord(σ) ≤ 2, we define Cσ as follows: (a) Cκ = N for
κ ∈ B; (b) Cι⇒τ = Sι =⇒ Cτ for ι ∈ B; and (c) Cσ⇒τ = Cσ =⇒ Sσ =⇒ Cτ if
ord(σ) = 1. We want to interpret terms s : σ where both σ and all variables
occurring in s are of type order either 0 or 1, as is the case for the left- and
right-hand side of rules. Thus, we let J c be a function mapping f ∈ Σ to some
J c
f ∈ CtypeOf(f) and assume given, for each type σ, valuations α : Xσ −→ Sσ and

ζ : Xσ −→ Cσ. We then define:

Jx s1 · · · snKcα,ζ = ζ(x)(Js1K
s
α, . . . , JsnKsα)

Jf s1 · · · sk t1 · · · tnKcα,ζ = J c
f (Js1K

c
α,ζ , Js1K

s
α, . . . , JskK

c
α,ζ , JskK

s
α, Jt1K

s
α, . . . , JtnKsα)

On Basic Feasible Functionals and the Interpretation Method 5

We let cost(s)α,ζ =
∑

{JtKcα,ζ | s ⊵ t and t is a non-variable term of base type}.
This is all well-defined under our assumptions that all variables have a type of order
0 or 1, and f : (ι⃗1 ⇒ κ1) ⇒ · · · ⇒ (ι⃗k ⇒ κk) ⇒ ν1 ⇒ · · · ⇒ νl ⇒ ι. We also define
cost′(s)α,ζ =

∑
{JtKcα,ζ | s ⊵ t and t /∈ X is of base type not in normal form}.

A cost–size interpretation F for a second order signature F = (B, Σ, typeOf)
is a choice of a quasi-ordered set Sι, for each ι ∈ B, along with cost- and size-
interpretations J c and J s defined as above. Let (F,R) be an STRS over F. We
say (F,R) is compatible with a cost–size interpretation if for any valuations α
and ζ, we have (a) JℓKcα,ζ > cost(r)α,ζ and (b) JℓKsα ⊒ JrKsα, for all rules ℓ→ r in
R. In this case we say such cost–size interpretation orients all rules in R.

Theorem 1 (Innermost Compatibility). Suppose R is an STRS compatible
with a cost–size interpretation F , then for any valuations α and ζ we have
cost′(s)α,ζ > cost′(t)α,ζ and JsKsα ⊒ JtKsα whenever s→R t.

From compatibility, we have that if s0 →R · · · →R sn, then n ≤ cost′(s0).
Hence, cost′(s) bounds the derivation height of s. This follows from [26, Corollary
34], although we significantly simplified the presentation: the limitation to second-
order fully applied rules and the lack of abstraction terms allow us to avoid
many of the complexities in [26]. We also adapted it to innermost rather than
call-by-value evaluation. A correctness proof of this version is supplied in the
Appendix A. Since α and ζ are universally quantified, we typically omit them,
and just write x instead of α(x) and F c instead of ζ(F).

Example 2. We let Snat = (N,≥) and assign J s
0 = 0 and J s

s = λλx.x + 1, as
well as J c

0 = 0 and J c
s = λλx.0. This gives us J⌜n⌝Ks = n for all n ∈ N, and

J⌜n⌝Kc = cost(n) = 0. Now, we let J s
add = λλxy.x+ y and J s

mult = λλxy.x ∗ y; then
indeed JℓKs ≥ JrKs for the first four rules of Example 1 (e.g., Jmult (sx) yKs =
(x + 1) ∗ y ≥ y + (x ∗ y) = Jadd y (multx y)Ks). Moreover, let us choose J c

add =
λλxy.x+ 1 and J c

mult = λλxy.x ∗ y + x+ 1. Then also JℓKc > cost(r) for all rules;
for example, Jmult (sx) yKc = (x+ 1) ∗ y + 2 ∗ x+ 3 > (y + 1) + (x ∗ y + 2 ∗ x+
1) = Jadd y (multx y)Kc+Jmultx yKc = cost(add y (multx y)). Regarding funcProd,
we can orient both rules by choosing J s

funcProd = λλFxy.y ∗ max(F (x), 1)
x and

J c
funcProd = λλFGxy.2 ∗ x ∗ y ∗max(F (x), 1)

x+1
+ x ∗G(x) + 2 ∗ x+ 1. This works

due to the monotonicity assumption, which provides, e.g., G(x+1) ≥ G(x). (This
function is not polynomial, but that is allowed in the general case.)

2.3 Basic Feasible Functionals

We assume familiarity with Turing machines. In this paper, we consider determin-
istic multi-tape Turing machines. Those are, conceptually, machines consisting
of a finite set of states, one or more (but a fixed number of) right-infinite tapes
divided into cells. Each tape is equipped with a tape head that scans the symbols
on the tape’s cells and may write on it. The head can move to the left or right.
Let W = {0, 1}∗. A k-ary Oracle Turing Machine (OTM) is a deterministic multi-
tape Turing machine with at least 2k+1 tapes: one main tape for (input/output),

6 P. Baillot et al.

k designated query tapes, and k designated answer tapes. It also has k distinct
query states qi and k answer states ai.

A computation with a k-ary OTM M requires k fixed oracle functions
f1, . . . , fk : W −→ W . We write Mf⃗ to denote a run of M with these func-
tions. A run of Mf⃗ on w starts with w written in the main tape. It ends when
the machine halts, and yields the word that is written in the main tape as output.
As usual, we only consider machines that halt on all inputs. The computation
proceeds as usual for non-query states. To query the value of fi on w, the machine
writes w on the corresponding query tape and enters the query state qi. Then,
in one step, the machine transitions to the answer state ai as follows: (a) the
query value w written in the query tape for fi is read; (b) the contents of the
answer tape for fi are changed to fi(w); (c) the query value w is erased from the
query tape; and (d) the head of the answer tape is moved to its first symbol. The
running time of Mf⃗ on w is the number of steps used in the computation.

A type-1 function is a mapping in W −→ W . A type-2 functional of rank
(k, l) is a mapping in (W −→W)

k −→W l −→W .

Definition 1. We say an OTM M computes a type-2 functional Ψ of rank (k, l)
iff for all type-1 functions f1, . . . , fk and x1, . . . , xl ∈ W , whenever Mf1,...,fk is
started with x1, . . . , xl written on its main tape (separated by blanks), it halts
with Ψ(f1, . . . , fk, x1, . . . , xl) written on its main tape.

Definition 2. Let {F1, . . . , Fk} be a set of type-1 variables and {x1, . . . , xl} a
set of type-0 variables. The set Pol2N[F1, . . . , Fk;x1, . . . , xl] of second-order
polynomials over N with indeterminates F1, . . . , Fk, x1, . . . , xl is generated by:

P,Q := n | x | P +Q | P ∗Q | F (Q)

where n ∈ N, x ∈ {x1, . . . , xl}, and F ∈ {F1, . . . , Fk}.

Notice that a polynomial expression can be viewed as a type-2 functional in the
natural way, e.g., P (F, x) = 3 ∗ F (x) + x is a second-order polynomial functional.
Given w ∈W , we write |w| for its length and define the length |f | of f :W −→W
as |f | = λλn.max

|y|≤n
|f(y)|. This allows us to define BFF as the class of functionals

computable by OTMs with running time bounded by a second-order polynomial.

Definition 3. A type-2 functional Ψ is in BFF iff there exist an OTM M and
a second-order polynomial P such that M computes Ψ and for all f⃗ and x⃗: the
running time of Mf1,...,fk on x1, . . . , xl is at most P (|f1|, . . . , |fk|, |x1|, . . . , |xl|).

3 Statement of the Main Result

The main result of this paper roughly states that BFF consists exactly of those
type-2 functionals computed by an STRS compatible with a polynomially bounded
cost–size tuple interpretation. To formally state this result, we must first define
what it means for an STRS to compute a type-2 functional and define precisely
the class of cost–size interpretations we are interested in.

On Basic Feasible Functionals and the Interpretation Method 7

Indeed, let us start by encoding words in W as terms. We let bit,word ∈ B
and introduce symbols o, i : bit and [] : word, :: : bit ⇒ word ⇒ word. Then for
instance 001 is encoded as the term :: o (:: o (:: i [])). We use the cleaner list-like
notation [o; o; i] in practice. Let w denote the term encoding of a word w. Next,
we encode type-1 functions as a possibly infinite set of one-step rewrite rules.

Definition 4. Consider a type-1 function f :W −→W and let Sf : word ⇒ word
be a fresh function symbol. A set of rules Rf defines f by way of Sf if for
each w ∈W there is exactly one rule of the form Sf w → f(w) in Rf .

Henceforth, we assume given that our STRS (F,R) at hand is such that F
contains o, i, [], :: typed as above and a distinguished symbol F : (word ⇒ word)k ⇒
wordl ⇒ word. Given type-1 functions f1, . . . , fk, we write Ff⃗ for F extended with
function symbols Sfi : word ⇒ word, with 1 ≤ i ≤ k, and let R+f⃗ = R∪

⋃k
i=1 Rf .

Now we can define the notion of type-2 computability for such STRSs.

Definition 5. Let (F,R) be an STRS. We say that F computes the type-2
functional Ψ in (F,R) iff for all type-1 functions f1, . . . , fk and all w1, . . . , wl ∈
W , FSf1 · · · Sfk w1 · · ·wl →+

R
+f⃗

u, where u = Ψ(f1, . . . , fk, w1, . . . , wl).

Next, we define what we mean by polynomially bounded interpretation.

Definition 6. We say an STRS (F,R) admits a polynomially bounded inter-
pretation iff (F,R) is compatible with a cost–size interpretation such that:
• Sword = (N,≥);
• J c

o = J c
i = J c

[] = 0, J c
:: = λλxy.0, and J s

:: = λλxy.x+ y + c for some c ≥ 1;
• J c

F is bounded by a polynomial in Pol2N[F
c
1 , F

s
1, . . . , F

c
k , F

s
k;x1, . . . , xl].

Finally, we can formally state our main result.

Theorem 2. A type-2 functional Ψ is in BFF if and only if there exists a finite
orthogonal STRS (F,R) such that the distinguished symbol F computes Ψ in
(F,R) and R admits a polynomially bounded cost–size interpretation.

We prove this result in two parts. First, we prove soundness in Section 4 which
states that every type-2 functional computed by an STRS as above is in BFF.
Then in Section 5 we prove completeness which states that every functional in BFF

can be computed by such an STRS. In order to simplify proofs, we only consider
type-2 functions of rank (1,1). We claim that the results can be easily generalized,
but the proofs become more tedious when handling multiple arguments.

Example 3. Let us consider the type-2 functional defined by Ψ := λλfx.
∑

i<|x|
f(i).

Notice that Ψ adds all f(i) over each word i ∈ W whose value (as a natural
number) is smaller than the length of x. This functional was proved to lie in BFF

in [21], where the authors utilized an encoding of Ψ as a BTLP2 program. We
can encode Ψ as an STRS as follows. Let us consider ancillary symbols lengthOf :
word ⇒ nat and toBin : nat ⇒ word. The former computes the length of a given

8 P. Baillot et al.

word and the latter converts a number from unary to binary representation. We
also consider rules for addition on binary words, i.e., +B : word ⇒ word ⇒ word,
which we use in infix notation below.

computeF x 0 acc→ acc

computeF x (s i) acc→ computeF x i (acc +B F (toBin i))

startF x→ computeF x (lengthOf x) []

Now, if we want to compute Ψ(f, x) we simply reduce the term start Sf x to
normal form. To show that this system is in BFF via our rewriting formalism, we
need to exhibit a cost–size tuple interpretation for it that satisfies Definition 6,
see [5, Example 3].

4 Soundness

In order to prove soundness, let us consider a fixed finite orthogonal STRS R
admitting a polynomially bounded cost–size interpretation such that it computes
a type-2 functional Ψ . We proceed to show that Ψ is in BFF roughly as follows:
1. Since R computes Ψ and admits a polynomially bounded interpretation, we

show that so does the extended system R+f (Definition 5). The restriction on
J s
:: (Definition 6) implies that JFSf wKc is bounded by a second-order polyno-

mial over |f |, |w|. We show this in Lemma 1. By compatibility (Theorem 1),
we can do at most polynomially many steps when reducing FSf w.

2. The cost polynomial restricts the size of any input that the function variable
F is applied to (e.g., a cost bound of 3+F c(m) implies that F is never called
on a term with size interpretation > m). This is the subject of Lemma 3.

3. Using the observations above, we then show that by graph rewriting we can
simulate R+f and compute each R+f -reduction step in polynomial time on
an OTM. This guarantees that Ψ is in BFF, Theorem 3.

4.1 Interpreting The Extended STRS, Polynomially

Our first goal is to provide a polynomially bounded cost–size interpretation to the
extended system R+f . We start with the observation that the size interpretation
of words in W is proportional to their length. Indeed, since J s

:: = λλxy.x+ y + c
(Definition 6) let µ := max(J s

o ,J s
i)+ c and ν := J s

[]. Consequently, for all w ∈W :

|w| ≤ JwKs ≤ µ ∗ |w|+ ν (1)

Recall that by Definition 4 the extended system R+f has possibly infinitely
many rules of the form Sfw → f(w). Such rules Sf represent calls for an oracle
to compute f in a single step. Thus, we set their cost to 1. The size should be
given by the length of the oracle output, taking the overhead of interpretation
into account. Hence, we obtain:

J c
Sf

= λλx.1 J s
Sf

= λλx.µ ∗ |f |(x) + ν

On Basic Feasible Functionals and the Interpretation Method 9

This is weakly monotonic because |f | is. It orients the rules in Rf because
JSf wKc = 1 > 0 = cost(f(w)), and JSf wKs = µ ∗ |f |(JwKs)+ ν ≥ µ ∗ |f |(|w|)+ ν ≥
µ ∗ |f(w)|+ ν by definition of |f |, which is superior or equal to Jf(w)Ks.

As J c
F is bounded by a second-order polynomial λλF cF sx.P , we can let

D(F, n) := P (λλx.1, λλx.µ∗F (x)+ν, µ∗n+ν). ThenD is a second-order polynomial,
and D(|f |, |w|) ≥ J c

F (J c
Sf
,J s

Sf
, JwKs) = cost(FSf w). By Theorem 1 we see:

Lemma 1. There exists a second-order polynomial D so that D(|f |, |w|) bounds
the derivation height of FSf w for any f ∈W −→W and w ∈W .

Notice that this lemma does not imply that Ψ is in BFF. It only guarantees that
there is a polynomial bound to the number of rewriting steps for such systems.
However, it does not immediately follow that this number is a reasonable bound
for the actual computational cost of simulating a reduction on an OTM. Consider
for example a rule f (sn) t→ f n (c t t). Every step doubles the size of the term.
A naive implementation – which copies the duplicated term in each step – would
take exponential time. Moreover, a single step using the oracle can create a very
large output, which is not considered part of the cost of the reduction, even
though an OTM would be unable to use it without first fully reading it.

Therefore, in order to prove soundness, we show how to realize a reasonable
implementation of rewriting w.r.t. OTMs. In essence, we will show that (1) oracle
calls are not problematic in the presence of polynomially bounded interpretations,
and (2) we can handle duplication with an appropriate representation of rewriting.

4.2 Bounding The Oracle Input

We first deal with the reasonability of oracle calls. We will show that there exists
a second-order polynomial B such that if an oracle call Sf x occurs anywhere
along the reduction F Sf w →+

R v, then |x| ≤ B(|f |, |w|). From this, we know that
the growth of the overall term size during an oracle call is at most |f |(B(|f |, |w|)).

Let P again be the polynomial bounding J c
F . Since P is a second-order

polynomial, each occurrence of a sub-expression F c(E) in P is a second-order
polynomial, and so is E. Let us enumerate these arguments as E1, . . . , En. We
can then form the new polynomial Q defined as

Q :=
∑
i

Ei where occurrences of F c(E′
j) inside Ei are replaced by 1

We let B(G, y) := Q(λλz.µ ∗G(z) + ν, µ ∗ y + ν).

Example 4. If P = λλF cF sx.x ∗F c(3+F s(9 ∗x))+F c(12) ∗F c(3+x ∗F c(2))+5,
then Q = 3 + F s(9 ∗ x) + 12 + 3 + x ∗ 1 + 2 = 20 + F s(9 ∗ x) + x. We have
B(G, x) = 20+µ∗G(9∗(µ∗x+ν))+ν+(µ∗x+ν) = 20+2∗ν+G(9∗µ∗x+9∗ν)+µ∗x.

Now B gives an upper bound to the argument values for F c that are considered:
if a function differs from J c

Sf
only on argument values greater than B(|f |, |w|),

then we can use it in P and obtain the same result. Formally:

10 P. Baillot et al.

Lemma 2. Fix f, w. Let G ∈ N −→ N with G(z) = 1 if z ≤ B(|f |, |w|). Then
P (G,J s

Sf
, JwKs) = P (J c

Sf
,J s

Sf
, JwKs).

This is proved by induction on the form of P , using that G is never applied on
arguments larger than B(|f |, |w|). Lemma 2 is used in the following key result:

Lemma 3 (Oracle Subterm Lemma). Let f :W −→W be a type-1 function
and w ∈W . If FSf w →∗

R+f
C[Sf x] for some context C, then |x| ≤ B(|f |, |w|).

Proof. In view of a contradiction, suppose there exist f, w, and x such that
FSf w →∗

R+f
C[Sf x] for some context C, and |x| > B(|f |, |w|). Let us now

construct an alternative oracle: let 0 : nat, s : nat ⇒ nat,S′
f : word ⇒ word and

helper : nat ⇒ nat ⇒ nat, and for N := D(|f |, |w|), let R′
f,w be given by:

S′f x → f(x) if |x| ≤ B(|f |, |w|) helper 0 y → y

S′f x → helper ⌜N⌝ f(x) otherwise helper (sx) y → helper x y

Where ⌜N⌝ is the unary number encoding of N as introduced in Section 2.1. Notice
that by definition, the rules for S′f will produce f(x) in one step if |x| ≤ B(|f |, |w|),
but they will take N + 2 steps otherwise. Also observe that Sf and S′

f behave
the same; that is, Sf x and S′f x have the same normal form on any input x. We
extend the interpretation function of the original signature with:

J c
S′
f
= λλx.

{
1 if x ≤ B(|f |, |n|)
N + 2 if x > B(|f |, |n|) J s

S′
f
= J s

Sf
(y)

J c
helper = λλxy.x+ 1 J s

helper = λλxy.y J s
0 = 0 J s

s = λλx.x+ 1

We easily see that this orients all rules in Rf,w. Then, by Lemma 2, cost(F S′f w) ≤
P (J c

S′
f
,J s

S′
f
, JwKs) = P (J c

Sf
,J s

Sf
, JwKs) ≤ D(|f |, |w|) = N . Yet, as we have

FSf w →∗
R+f

C[Sf x], we also have FSf w →R∪R′
f,w

C ′[S′
f x], where C ′ is ob-

tained from C by replacing all occurrences of Sf by S′
f . Since |x| > B(|f |, |w|)

by assumption, the reduction FS′
f w →∗

R∪R′
f,w

C[S′
f w] →∗

R∪Rf,w′ C[f(x)] takes
strictly more than N steps, contradicting Theorem 1. ⊓⊔

4.3 Graph Rewriting

Lemma 1 guarantees that if R is compatible with a suitable interpretation,
then at most polynomially many R+f -steps can be performed starting in F Sf w.
However, as observed in Section 4.1, this does not yet imply that a type-2
functional computed by an STRS with such an interpretation is in BFF. To
simulate a reduction on an OTM, we must find a representation whose size does
not increase too much in any given step. The answer is graph rewriting.

Definition 7. A term graph for a signature Σ is a tuple (V, label, succ, Λ)
with V a finite nonempty set of vertices; Λ ∈ V a designated vertex called the root;
label : V −→ Σ ∪ {@} a partial function with @ fresh; and succ : V −→ V ∗

On Basic Feasible Functionals and the Interpretation Method 11

v0 : @

v1 : @

v2 : add v3 : ⊥

v4 : ⊥

(a)

@

@

add ⊥

⊥

(b)

@

@

add @

⊥s

(c)

@

@

f @

g ⊥

(d)

Fig. 1: A term graph, its simplified version, and two graphs with sharing

a total function such that succ(v) = v1v2 when label(v) = @ and succ(v) = ε
otherwise. We view this as a directed graph, with an edge from v to v′ if v′ ∈
succ(v), and require that this graph is acyclic (i.e., there is no path from any v
to itself). Given term graph G, we will often directly refer to VG, labelG, etc.

Term graphs can be denoted visually in an intuitive way. For example, using
Σ from Example 1, the graph with V = {v0, . . . , v4}, label = {v0, v1 7→ @, v2 7→
add}, succ = {v0 7→ v1v4, v1 7→ v2v3, v3, v4, v5 7→ ε} amd Λ = v0 is pictured in
Figure 1a. We use ⊥ to indicate unlabeled vertices and a circle for Λ. We will
typically omit vertex names, as done in Figure 1b. Note that the definition allows
multiple vertices to have the same vertex as successor; these successor vertices
with in-degree > 1 are shared. Two examples are denoted in Figures 1c and 1d.

Each term has a natural representation as a tree. Formally, for a term s we let
[s]G = (pos(s), label, succ, ♯) where label(p) = @ if s|p = s1s2 and label(p) =
f if s|p = f; label(p) is not defined if s|p is a variable; and succ(p) = (1 ·p)(2 ·p) if
s|p = s1 s2 and succ(p) = ε otherwise. Essentially, [s]G maintains the positioning
structure of s and forgets variable names. For example, Figure 1b denotes both
[addx y]G and [addxx]G.

Our next step is to reduce term graphs using rules. We limit interest to
left-linear rules, which includes all rules in R+f (as R is orthogonal, and the rules
in Rf are ground). To define reduction, we will need some helper definitions.

Definition 8. Let G = (V, label, succ, Λ), v ∈ V . The subgraph reach(G, v) of
G rooted at v is the term graph (V ′, label′, succ′, v) where V ′ contains those
v′ ∈ V such that a path from v to v′ exists, and label′, succ′ are respectively the
limitations of label and succ to V ′.

Definition 9. A homomorphism between two term graphs G and H is a
function ϕ : VG −→ VH with ϕ(ΛG) = ΛH , and for v ∈ VG such that labelG(v)
is defined, labelH(ϕ(v)) = labelG(v) and succH(ϕ(v)) = ϕ(v1) . . . ϕ(vk) when
succG(v) = v1 . . . vk. (If labelG(v) is undefined, succH(ϕ(v)) may be anything.)

Definition 10. A redex in G is a triple (ρ, v, ϕ) consisting of some rule ρ =
ℓ→ r ∈ R+f , a vertex v in VG, and a homomorphism ϕ : [ℓ]G −→ reach(G, v).

12 P. Baillot et al.

Definition 11. Let G be a term graph and v1, v2 vertices in G. The redirection
of v1 to v2 is the term graph G[v1 ≫ v2] ≡ (VG, labelG, succG′ , Λ′

G) with

succG′(v)i =

{
v2, if succG(v)i = v1

succG(v)i, otherwise
Λ′
G =

{
v2 if ΛG = v1

ΛG otherwise

That is, we replace every reference to v1 by a reference to v2. With these definitions
in hand, we can define contraction of term graphs:

Definition 12. Let G be a term graph, and (ρ, v, ϕ) a redex in G with ρ ∈ R+f ,
such that no other vertex v′ in reach(G, v) admits a redex (so v is an innermost
redex position). Denote ax for the position of variable x in ℓ, and recall that ax is a
vertex in [ℓ]G. By left-linearity, ax is unique for x ∈ vars(ℓ). The contraction of
(ρ, v, ϕ) in G is the term graph J produced after the following steps: H (building),
I (redirection), and J (garbage collection).

(building) Let H = (VH , labelH , succH , ΛG) where:
• VH = VG ⊎ {p ∈ pos(r) | r|p is not a variable} (⊎ means disjoint union);
• for v ∈ VG: labelH(v) = labelG(v) and succH(v) = succG(v)
• for p ∈ VH with r|p not a variable:

• labelH(p) = f if r|p = f and labelH(p) = @ otherwise
• succH(p) = ε if r|p = f; otherwise, succH(p) = ψ(1 · p)ψ(2 · p)

Here, ψ(q) = q if r|q is not a variable; if r|q = x then ψ(q) = ϕ(ax).
(redirection) If r is a variable x (so H = G), then let I = G[v ≫ ϕ(ax)].

Otherwise, let I = H[v≫ ♯], so with all references to v redirected to the root
vertex for r.

(garbage collection) Let J := reach(I, ΛI) (so remove unreachable vertices).

We then write G⇝ J in one step, and G⇝n J for the n-step reduction.

We illustrate this with two examples. First, we aim to rewrite the graph of
Figure 2a with a rule add 0 y → y at vertex v. Since the right-hand side is a
variable, the building phase does nothing. The result of the redirection phase is
given in Figure 2b, and the result of the garbage collection in Figure 2c.

@

s v: @

@ @

add 0 s

(a)

@

s v: @

@ @

add 0 s

(b)

@

s @

s 0

(c)

Fig. 2: Reducing a graph with the rule add 0 y → y

On Basic Feasible Functionals and the Interpretation Method 13

Second, we consider a reduction by mult (sx) y → add y (multx y). Figure 3a
shows the result of the building phase, with the vertices and edges added during
this phase in red. Redirection sets the root to the squared node (the root of the
right-hand side), and the result after garbage collection is in Figure 3b.

@

@

mult

@

s 0

@

@

add

@

@

mult

(a)

@

@

add

@

@

mult
@

s 0

(b)

Fig. 3: Reducing a term graph with substantial sharing

Note that, even when a term graph G is not a tree, we can find a corresponding
term: we assign a variable var(v) to each unlabeled vertex v in G, and let:

θ(v) =

θ(v1) θ(v2) if label(v) = @ and succ(v) = v1v2
f if label(v) = f
var(v) if label(v) is undefined

Then we may define [G]−1
G = θ(ΛG). For a linear term, clearly [[s]G]

−1
G = s

(modulo variable renaming). We make the following observation:

Lemma 4. Assume given a term graph G such that there is a path from ΛG

to every vertex in VG, and let [G]−1
G = s. If G ⇝ H then [G]−1

G →+
R+f

[H]−1
G .

Moreover, if s→R+f
t for some t, then there exists H such that G⇝ H.

Consequently, if →R+f
is terminating, then so is⇝; and if [s]G ⇝n G for some

ground term s then s→∗
R+f

[G]−1
G in at least n steps. Notice that if G does not

admit any redex, then [G]−1
G is in normal form. Moreover, since R+f = R∪Rf

is orthogonal (as R is orthogonal and the Rf rules are non-overlapping) and
therefore confluent, this is the unique normal form of s. We conclude:

Corollary 1. If [FSf w]G ⇝n G, then n ≤ D(|f |, |w|); and if G is in normal
form, then [G]−1

G = Ψ(f,w).

4.4 Bringing Everything Together

We are now ready to complete the soundness proof following the recipe at the start
of the section. Towards the third bullet point, we make the following observation.

14 P. Baillot et al.

Lemma 5. There is a constant a such that, whenever G⇝ H by a rule in R,
then |H| ≤ |G|+ a, where |G| denotes the total number of nodes in the graph G.

Proof. In a step using a rule ℓ → r, the number of nodes in the graph can be
increased at most by |[r]G|. As there are only finitely many rules in R, we can
let a be the number of nodes in the largest graph for a right-hand side r. ⊓⊔

To see that graph rewriting with Sf can be implemented in an efficient way, we
observe that the size of any intermediary graph in the reduction [Gw]G →+

R [q]G
is polynomially bounded by a second-order polynomial over |f |, |w|:

Lemma 6. There is a second-order polynomial Q such that if [FSf w]G ⇝∗ H,
then |H| ≤ Q(|f |, |w|).

Proof. Let Q(F, x) := x + D(F, x) ∗ (a + F (B(F, x))), where D is the polyno-
mial from Lemma 1, a is the constant from Lemma 5, and B is the polyno-
mial from Section 4.2. This suffices, because there are at most D(|f |, |w|) steps
(Lemma 1, Corollary corollary 1), each of which increases the graph size by at
most max(a, |f |(B(|f |, |w|))). ⊓⊔

All in all, we are finally ready to prove the soundness side of the main theorem:

Theorem 3. Let R be a finite orthogonal STRS admitting a polynomially
bounded interpretation. If F computes a type-2 functional Ψ , then Ψ ∈ BFF.

Proof. Given (F,R), we can construct an OTM M so that for a given f ∈
W −→ W , the machine Mf executed on w ∈ W computes the normal form of
FSf w under →R+f

using graph rewriting. We omit the exact construction, but
observe:
• that we can represent each graph in polynomial space in the size of the graph;
• that we can do a rewriting step that does not call the oracle (so using a rule

in R) following the contraction algorithm we defined in Definition 12, which
is clearly feasible to do in polynomial time in the size of the graph;

• and that each oracle call (implemented in rewriting by a Rf -step Sf x → y)
is resolved by copying x to the query tape, transitioning to the query state,
and from the answer state copying y from the answer tape to the main tape.
By Lemma 3 this is doable in polynomial time in |f |, |w| and the graph size.

By Lemma 6, graph sizes are bounded by a polynomial over |f |, |w|, so using the
above reasoning, the same holds for the cost of each reduction step. In summary:
the total cost of Mf running on w is bounded by a second-order polynomial
in terms of |f | and |w|. As Mf simulates R+f via graph rewriting and R+f

computes Ψ , M also computes Ψ . By Definition 3, Ψ is in BFF. ⊓⊔

5 Completeness

Recall from Section 3 that to prove completeness we have to show the following:
if a given type-2 functional Ψ is in BFF, then there exists an orthogonal STRS

On Basic Feasible Functionals and the Interpretation Method 15

that computes Ψ and admits a polynomially bounded interpretation. We prove
this by providing an encoding of OTMs as STRSs that admit a polynomially
bounded interpretation.

The encoding is divided into three steps. In Section 5.1, we will define the
function symbols that will allow us to encode any possible machine configuration
as terms. In Section 5.2, we will encode transitions as reduction rules that rewrite
configuration terms. Lastly, we will design an STRS to simulate a complete
execution of an OTM in polynomially many steps. Achieving this polynomial
bound is non-trivial and is done in Sections 5.3–5.4.

Henceforth, we assume given a fixed OTM M , and a second-order polynomial
PM , such that M operates in time PM . For simplicity, we assume the machine
has only three tapes (one input/output tape, one query tape, one answer tape);
that each non-oracle transition only operates on one tape (i.e., reading/writing
and moving the tape head); and that we only have tape symbols {0, 1, B}.

5.1 Representing Configurations

Following 3, we have o, i : bit, :: : bit ⇒ word ⇒ word and [] : word. To represent
a (partial) tape, we also introduce b : bit for the blank symbol. Now for instance
a tape with content 011B01BB · · · (followed by infinitely many blanks) may be
represented as the list [o; i; i; b; o; i] of type word. We may also add an arbitrary
number of blanks at the end of the representation; e.g., [o; i; i; b; o; i; b; b].

We can think of a tape configuration — the combination of a tape and the
position of the tape head — as a finite word w1 . . . wp−1#wpwp+1 . . . wk (followed
by infinitely many blanks). Here, the tape’s head is reading the symbol wp. We
can split this tape into two components: the left word w1 . . . wp−1, and the right
word wp . . . wk. To represent a tape configuration, we introduce three symbols:

L : word ⇒ left R : word ⇒ right split : left ⇒ right ⇒ tape

Here, L,R hold the content of the left and right split of the tape, respectively.
While we technically do not need these two constructors (we could have split :
word ⇒ word ⇒ tape), they serve to make configurations more human-readable.
For convenience in rewriting transitions, later on, we will encode the left side of
the split in reverse order. Specifically, we encode w1 . . . wp−1#wpwp+1 . . . wk as

split (L [wp−1; . . . ;w2;w1]) (R [wp; . . . ;wk−1;wk])

The symbol currently being read is the first element of the list below R; in case
of R [], this symbol is B. For a concrete example, a tape configuration 1B0#10 is
represented by: split (L [o; b; i]) (R [i; o]). Since we have assumed an OTM with three
tapes, a configuration of the machine at any moment is a tuple (q, t1, t2, t3), with
q a state and t1, t2, t3 tape configurations. To represent machine configurations,
we introduce, for each state q, a symbol q : tape ⇒ tape ⇒ tape ⇒ config. Thus,
a configuration (q, t1, t2, t3) is represented by a term qT1 T2 T3.

16 P. Baillot et al.

Example 5. The initial configuration for a machine Mf on input w is a tuple
(q0,#w,#B,#B). This is represented by the term

initial(w) := q0 (split (L []) (Rw)) (split (L []) (R [])) (split (L []) (R []))

To interpret the symbols from this section, we let (Sι,⊒ι) := (N,≥) for all ι,
let J c

f = λλx1 . . . xm.0 whenever f takes m arguments, and for the sizes:

J s
o = 0 J s

b = 0 J s
L = λλx.x J s

:: = λλxy.x+ y + 1 J s
q = λλxyz.x+ y

J s
i = 0 J s

[] = 0 J s
R = λλx.x J s

split = λλx.xy.x+ y (for all states q)

Hence, JwKs = |w|, which satisfies the requirements of Theorem 2; the size of a
tape configuration w1 . . . wp−1#wp . . . wk is k, and the size of a configuration is
the size of its first and second tapes combined. We do not include the third tape,
as it does not directly affect either the result yielded by the final configuration
(this is read from the first tape), nor the size of a word the oracle f is applied on.

5.2 Executing The Machine

A single step in an OTM can either be an oracle call (a transition from the
query state to the answer state), or a traditional step: we assume that an OTM

M has a fixed set T of transitions q
r/i, d
====⇒

t
l where q is the input state, l the

output state, t ∈ {1, 2, 3} the tape considered (recall that we have assumed that a
non-oracle transition only operates on one tape), r, i ∈ {0, 1, B} respectively the
symbol being read and the symbol being written, and d ∈ {L,R} the direction
for the read head of tape t to move. We will model the computation of M as
rules that simulate the small step semantics for the machine.

To encode a single transition, let step : (word ⇒ word) ⇒ config ⇒ config. For

any transition of the form q
r/i, L
====⇒

1
l (so a transition operating on tape 1, and

moving left), we introduce a rule (where we write 0 = o, 1 = i, B = b):

stepF (q (split (L (x::y)) (R (r::z)))u v) → l (split (L y) (R (x::i::z)))u v

Moreover, for transitions q
B/w, L
=====⇒

1
l (so where B is read), we add a rule:

stepF (q (split (L (x::y)) (R []))u v) → l (split (L y) (R (x::i::[])))u v

These rules respectively handle the steps where a tape configuration is changed
from u1 . . . up−1up#rup+2 . . . uk to u1 . . . up−1#upiup+2 . . . uk, and where a tape
configuration is changed from u1 . . . uk# to u1 . . .#uki.

Transitions where d = R, or on the other two tapes, are encoded similarly.
Next, we encode oracle calls. Recall that, to query the machine for the value

of f at u, we write u on the second tape, move its head to the leftmost position,
and enter the query state. Then, the content of this tape is erased and the image
of f over u is written in the third tape. Visually, this step is represented as:

(query, ⟨tape1⟩, v1 . . . vp#uB . . . , ⟨tape3⟩)⇝ (answer, ⟨tape1⟩,#B,#f(u))

On Basic Feasible Functionals and the Interpretation Method 17

This is implemented by the following rules:

stepF (query t1 (splitx (R y)) t3) → answer t1 (split (L []) (R []))
(split (L []) (R (F (clean y))))

clean (o::x) → o::(cleanx) clean (b::x) → []
clean (i::x) → i::(cleanx) clean [] → []

Here, clean : word ⇒ word turns a word that may have blanks in it into a bitstring,
by reading until the next blank; for instance replacing [o; i; b; i] by [o; i].

The various step rules, as well as the clean rules, are non-overlapping because
we consider deterministic OTMs. They are also left-linear, and are oriented using:

J s
clean = λλx.x J c

clean = λλx.x+ 1
J s
step = λλFx.x+ 1 J c

step = λλF cF sx.F c(x) + x+ 2

(Note that J s
step is so simple because the size of a configuration does not include

the size of the answer tape.) From the rules, the following result is obvious:

Lemma 7. Let Mf be an OTM and C,C ′ be machine configurations of Mf such
that C ⇝ C ′. Then step Sf [C] →+

R [C ′], where [C] is the term encoding of C.

5.3 A Bound on the Number of Steps

To generalize from performing a single step of the machine to tracing a full
computation on the machine level, the natural idea would be to define rules such
as:

executeF (qx y z) → executeF (step(qx y z)) for q ̸= end

executeF (end (split (Lx) (Rw)) y z) → cleanw

Then, reducing execute Sf initial(w) to normal form simulates a full OTM execu-
tion of Mf on input w. Unfortunately, this rule does not admit an interpretation,
as it may be non-terminating. A solution could be to give execute an additional
argument ⌜N⌝ suggesting an execution in at most N steps; this argument would
ensure termination, and could be used to find an interpretation.

The challenge, however, is to compute a bound on the number of steps in the
OTM: the obvious thought is to compute PM (|f |, |w|), but this cannot in general
be done in polynomial time because the STRS does not have access to |f |: since
|f |(i) = max{x ∈ N | |x| ≤ i}, there are exponentially many choices for x.

To solve this, and following [22, Proposition 2.3], we observe that it suffices to
know a bound for f(x) for only those x on which the oracle is actually questioned.
That is, for A ⊆W , let |f |A = λλn.max{|f(x)| | x ∈ A ∧ |x| ≤ n}. Then:

Lemma 8. Suppose an OTM Mf runs in time bounded by PM (|f |, |w|) on input
w. If Mf transitions in N steps from its initial state to some configuration C,
calling the oracle only on words in A ⊆W , then N ≤ PM (|f |A, |w|).

18 P. Baillot et al.

Proof (Sketch). We construct f ′ with f ′(x) = 0 if x /∈ A and f ′(x) = f(x) if
x ∈ A. Then |f ′| = |f |A, and Mf ′ runs the same on input w as Mf does. ⊓⊔

Now, for A encoded as a term A (using symbols ∅ : set, setcons : word ⇒
set ⇒ set), we can compute |f |A using the rules below, where we use unary
integers as in Example 1 (0 : nat, s : nat ⇒ nat), and defined symbols len : word ⇒
nat, max : nat ⇒ nat ⇒ nat, limit : word ⇒ nat ⇒ word, retif : word ⇒ nat ⇒
word ⇒ word, tryapply : (word ⇒ word) ⇒ word ⇒ nat ⇒ nat, tryall : (word ⇒
word) ⇒ set ⇒ nat ⇒ nat. By design, retif x ⌜n⌝ y reduces to y if |x| ≤ n and
to [] otherwise; tryapply Sf x ⌜n⌝ reduces to the unary encoding of |F |{x}(n) and
tryall a x ⌜n⌝ yields |F |A(n).

len [] → 0 len (x::y) → s (len y)
max 0m→ m max (sn) 0 → sn max (sn) (sm) → s (maxnm)
limit []n→ [] limit (x::y) 0 → [] limit (x::y) (sn) → x::(limit y n)

retif []n z → z retif (x::y) 0 z → [] retif (x::y) (sn) z → retif y n z

tryapplyF an→ len (retif an (F (limit an)))
tryallF ∅n→ 0 tryallF (setcons a tl)n→ max (tryapplyF an) (tryallF tl n)

An interpretation is provided in Appendix B. Importantly, the limit function
ensures that, in tryallF n we never apply F to a word w with |w| > n. Therefore
we can let JAKs = |A|, the number of words in A, and have J s

tryall = λλFan.F (n)
and J c

tryall = λλF cF san.1 + a+ F c(n) + 2 ∗ F s(n) + 2 ∗ n+ 6.
Now, for a given second-order polynomial P , fixed f, n, and a term A encoding

a set A ⊆W , we can construct a term ΘP
Sf ;⌜n⌝;A that computes P (|f |A, n) using

tryall and the functions add,mult from Example 1. By induction on P , we have
JΘP

Sf ;⌜n⌝;AKs = P (|f |, n), while its cost is bounded by a polynomial over |f |, n, |A|.

5.4 Finalising Execution

Now, we can define execution in a way that can be bounded by a polynomial
interpretation. We let execute : (word ⇒ word) ⇒ nat ⇒ nnat ⇒ nat ⇒ set ⇒
config ⇒ word and will define rules to reduce expressions executeF nmz a c
where
• F is the function to be used in oracle calls.
• n − 1 is a bound on the number of steps that can be done before the next

oracle call (or until the machine completes execution).
• m is essentially a natural number that represents the number of steps that

have been done so far. We use a new sort nnat with function symbols o : nnat
and n : nnat ⇒ nnat because we will let Snnat = (N,≤), so ordered in the
other direction. This will be essential to find an interpretation for execute.

• z is a unary representation of |w|, where w is the input to the OTM.
• c is the current configuration.

Using helper symbols F′ : (word ⇒ word) ⇒ nat ⇒ config ⇒ word, execute′ :
(word ⇒ word) ⇒ nat ⇒ nnat ⇒ nat ⇒ set ⇒ config ⇒ word, extract : tape ⇒
word and minus : nat ⇒ nnat ⇒ nat, we introduce the rules:

On Basic Feasible Functionals and the Interpretation Method 19

FF w → F′ F (lenw) (q0 (split(L []) (Rw)) (split(L []) (R [])) (split(L []) (R [])))

F′ F z c→ executeF ΘPM+1
F ;z;∅ o z ∅ c

executeF (sn)mz a (q t1 t2 t3) →
executeF n (nm) z (stepF (q t1 t2 t3)) for q /∈ {query, end}

executeF (sn)mz a (query t1 t2 t3) →
execute′ F n (nm) z (setcons (extract t2) a) (query t1 t2 t3)

execute′ F nmz a c→ executeF (minusΘPM+1
F ;z;a m)mz a (stepF c)

executeF nmz a (end t1 t2 t3) → extract t1
extract (split (Lx) (R y)) → clean y
minusx o → x minus 0 (n y) → o minus (sx) (n y) → minusx y

That is, an execution on FSf w starts by computing the length of w and
PM (|f |∅, |w|), and uses these as arguments to execute. Each normal transition
lowers the number n of steps we are allowed to do and increases the number n of
steps we have done. Each oracle transition updates A, and either lowers n by one,
or updates it to the new value PM (|f |A, |w|)−m, since we have already done m
steps. Once we read the final state, the answer is read off the first tape.

For the interpretation, note that the unusual size set of nnat allows us to
choose J s

minus = λλxy.max(x− y, 0) without losing monotonicity. Hence, in every
step executeF nmz a c, the value max(PM (JF Ks, JzKs)+ 1− JmKs, JnKs) decreases
by at least one. Since JΘPM+1F ; z; aKs = PM (JF Ks, JzKs) regardless of a, we can
use this component as part of the interpretation. The full interpretation functions
for execute and F are long and complex, so we will not supply them here. They
can be found in Appendix B. We will only conclude the other side of Theorem 2:

Theorem 4. If Ψ ∈ BFF, then there exists a finite orthogonal STRS R such that
F computes Ψ in R and R admits a polynomially bounded interpretation.

6 Conclusions and Future Work

In this paper, we have shown that BFF can be characterized through second-order
term rewriting systems admitting polynomially bounded cost–size interpretations.
This is arguably the first characterization of the basic feasible functionals purely
in terms of rewriting theoretic concepts.

For the purpose of presentation, we have imposed some mild restrictions that
we believe are not essential in practice. In future extensions, we can eliminate
these restrictions, such as allowing lambda-abstraction, non-base type rules, and
higher-order functions (assuming that F is still second-order). We can also allow
arbitrary inductive data structures as input.

Another direction we definitely wish to explore is the characterization of
polynomial time complexity for functionals of order strictly higher than two. It
is well known that the underlying theory in this case becomes less robust than
in type-2 complexity. As such, it is not clear which of the existing proposals for
complexity classes of higher-order polytime complexity we can hope to capture
within our framework.

20 P. Baillot et al.

References

1. Avanzini, M., Moser, G.: Polynomial path orders. Log. Methods Comput. Sci. 9(4)
(2013). https://doi.org/10.2168/LMCS-9(4:9)2013

2. Avanzini, M., Moser, G., Schaper, M.: Tct: Tyrolean complexity tool. In: Chechik,
M., Raskin, J. (eds.) Proceedings of TACAS 2016 conference. Lecture Notes in
Computer Science, vol. 9636, pp. 407–423. Springer (2016). https://doi.org/10.
1007/978-3-662-49674-9_24

3. Baillot, P., Dal Lago, U.: Higher-order interpretations and program complexity. In:
Proceedings of CSL 2012. LIPIcs, vol. 16, pp. 62–76. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2012). https://doi.org/10.4230/LIPICS.CSL.2012.62, A
journal version in Information and Computation (248), 2016

4. Baillot, P., De Benedetti, E., Ronchi Della Rocca, S.: Characterizing polynomial
and exponential complexity classes in elementary lambda-calculus. Inf. Comput.
261, 55–77 (2018). https://doi.org/10.1016/J.IC.2018.05.005

5. Baillot, P., Lago, U.D., Kop, C., Vale, D.: On basic feasible functionals and the
interpretation method (2024), https://arxiv.org/abs/2401.12385

6. Beame, P., Cook, S.A., Edmonds, J., Impagliazzo, R., Pitassi, T.: The relative
complexity of NP search problems. J. Comput. Syst. Sci. 57(1), 3–19 (1998).
https://doi.org/10.1006/JCSS.1998.1575

7. Beckmann, A., Weiermann, A.: A term rewriting characterization of the polytime
functions and related complexity classes. Arch. Math. Log. 36(1), 11–30 (1996).
https://doi.org/10.1007/s001530050054

8. Bellantoni, S.J., Cook, S.A.: A new recursion-theoretic characterization of the
polytime functions. Comput. Complex. 2, 97–110 (1992). https://doi.org/10.1007/
BF01201998

9. Bonfante, G., Cichon, A., Marion, J., Touzet, H.: Algorithms with polynomial
interpretation termination proof. J. Funct. Program. 11(1), 33–53 (2001). https:
//doi.org/10.1017/S0956796800003877

10. Bonfante, G., Marion, J., Moyen, J.: Quasi-interpretations a way to control resources.
Theor. Comput. Sci. 412(25), 2776–2796 (2011). https://doi.org/10.1016/j.tcs.2011.
02.007

11. Cobham, A.: The intrinsic computational difficulty of functions. In: Bar-Hillel,
Y. (ed.) Logic, Methodology and Philosophy of Science: Proceedings of the 1964
International Congress (Studies in Logic and the Foundations of Mathematics), pp.
24–30. North-Holland Publishing (1965)

12. Constable, R.L.: Type two computational complexity. In: Aho, A.V., Borodin, A.,
Constable, R.L., Floyd, R.W., Harrison, M.A., Karp, R.M., Strong, H.R. (eds.)
Proceedings of the 5th Annual ACM Symposium on Theory of Computing, April
30 - May 2, 1973, Austin, Texas, USA. pp. 108–121. ACM (1973). https://doi.org/
10.1145/800125.804041

13. Dal Lago, U., Hofmann, M.: Realizability models and implicit complexity. Theor.
Comput. Sci. 412(20), 2029–2047 (2011). https://doi.org/10.1016/J.TCS.2010.12.
025

14. Danner, N., Royer, J.S.: Adventures in time and space. In: Morrisett, J.G., Jones,
S.L.P. (eds.) Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2006, Charleston, South Carolina,
USA, January 11-13, 2006. pp. 168–179. ACM (2006). https://doi.org/10.1145/
1111037.1111053

https://doi.org/10.2168/LMCS-9(4:9)2013
https://doi.org/10.2168/LMCS-9(4:9)2013
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.4230/LIPICS.CSL.2012.62
https://doi.org/10.4230/LIPICS.CSL.2012.62
https://doi.org/10.1016/J.IC.2018.05.005
https://doi.org/10.1016/J.IC.2018.05.005
https://arxiv.org/abs/2401.12385
https://doi.org/10.1006/JCSS.1998.1575
https://doi.org/10.1006/JCSS.1998.1575
https://doi.org/10.1007/s001530050054
https://doi.org/10.1007/s001530050054
https://doi.org/10.1007/BF01201998
https://doi.org/10.1007/BF01201998
https://doi.org/10.1007/BF01201998
https://doi.org/10.1007/BF01201998
https://doi.org/10.1017/S0956796800003877
https://doi.org/10.1017/S0956796800003877
https://doi.org/10.1017/S0956796800003877
https://doi.org/10.1017/S0956796800003877
https://doi.org/10.1016/j.tcs.2011.02.007
https://doi.org/10.1016/j.tcs.2011.02.007
https://doi.org/10.1016/j.tcs.2011.02.007
https://doi.org/10.1016/j.tcs.2011.02.007
https://doi.org/10.1145/800125.804041
https://doi.org/10.1145/800125.804041
https://doi.org/10.1145/800125.804041
https://doi.org/10.1145/800125.804041
https://doi.org/10.1016/J.TCS.2010.12.025
https://doi.org/10.1016/J.TCS.2010.12.025
https://doi.org/10.1016/J.TCS.2010.12.025
https://doi.org/10.1016/J.TCS.2010.12.025
https://doi.org/10.1145/1111037.1111053
https://doi.org/10.1145/1111037.1111053
https://doi.org/10.1145/1111037.1111053
https://doi.org/10.1145/1111037.1111053

On Basic Feasible Functionals and the Interpretation Method 21

15. Dershowitz, N.: Orderings for term-rewriting systems. Theor. Comput. Sci. 17,
279–301 (1982). https://doi.org/10.1016/0304-3975(82)90026-3

16. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework:
Combining techniques for automated termination proofs. In: Baader, F., Voronkov,
A. (eds.) Logic for Programming, Artificial Intelligence, and Reasoning, 11th
International Conference, LPAR 2004, Montevideo, Uruguay, March 14-18, 2005,
Proceedings. Lecture Notes in Computer Science, vol. 3452, pp. 301–331. Springer
(2004). https://doi.org/10.1007/978-3-540-32275-7_21

17. Hainry, E., Kapron, B.M., Marion, J., Péchoux, R.: A tier-based typed programming
language characterizing feasible functionals. In: Hermanns, H., Zhang, L., Kobayashi,
N., Miller, D. (eds.) LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in
Computer Science, Saarbrücken, Germany, July 8-11, 2020. pp. 535–549. ACM
(2020). https://doi.org/10.1145/3373718.3394768

18. Hainry, E., Kapron, B.M., Marion, J., Péchoux, R.: Complete and tractable machine-
independent characterizations of second-order polytime. In: Bouyer, P., Schröder,
L. (eds.) Foundations of Software Science and Computation Structures - 25th
International Conference, FOSSACS 2022, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany,
April 2-7, 2022, Proceedings. Lecture Notes in Computer Science, vol. 13242, pp.
368–388. Springer (2022). https://doi.org/10.1007/978-3-030-99253-8_19

19. Hainry, E., Péchoux, R.: Theory of higher order interpretations and application
to basic feasible functions. Log. Methods Comput. Sci. 16(4) (2020), https://lmcs.
episciences.org/6973

20. Hartmanis, J., Stearns, R.E.: Automata-based computational complexity. Inf. Sci.
1(2), 173–184 (1969). https://doi.org/10.1016/0020-0255(69)90014-0

21. Irwin, R.J., Royer, J.S., Kapron, B.M.: On characterizations of the basic feasible
functionals (part i). J. Funct. Program. 11(1), 117–153 (2001). https://doi.org/10.
1017/s0956796800003841

22. Kapron, B.M., Cook, S.A.: A new characterization of type-2 feasibility. SIAM J.
Comput. 25(1), 117–132 (1996). https://doi.org/10.1137/S0097539794263452

23. Kapron, B.M., Steinberg, F.: Type-two polynomial-time and restricted lookahead.
In: Dawar, A., Grädel, E. (eds.) Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12,
2018. pp. 579–588. ACM (2018). https://doi.org/10.1145/3209108.3209124

24. Kawamura, A., Cook, S.A.: Complexity theory for operators in analysis. ACM Trans.
Comput. Theory 4(2), 5:1–5:24 (2012). https://doi.org/10.1145/2189778.2189780

25. Klop, J.W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction systems:
Introduction and survey. Theor. Comput. Sci. 121(1&2), 279–308 (1993). https:
//doi.org/10.1016/0304-3975(93)90091-7

26. Kop, C., Vale, D.: Cost-size semantics for call-by-value higher-order rewriting.
In: Proc. FSCD. LIPIcs, vol. 260, pp. 15:1–15:19 (2023). https://doi.org/10.4230/
LIPIcs.FSCD.2023.15

27. Kop, C., Vale, D.: Tuple interpretations for higher-order complexity. In: Kobayashi,
N. (ed.) 6th International Conference on Formal Structures for Computation
and Deduction, FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Virtual
Conference). LIPIcs, vol. 195, pp. 31:1–31:22. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2021). https://doi.org/10.4230/LIPIcs.FSCD.2021.31

28. Kusakari, K.: On proving termination of term rewriting systems with higher-order
variables. IPSJ Transactions on Programming 42(SIG 7 (PRO 11)), 35–45 (2001),
http://id.nii.ac.jp/1001/00016864/

https://doi.org/10.1016/0304-3975(82)90026-3
https://doi.org/10.1016/0304-3975(82)90026-3
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1145/3373718.3394768
https://doi.org/10.1145/3373718.3394768
https://doi.org/10.1007/978-3-030-99253-8_19
https://doi.org/10.1007/978-3-030-99253-8_19
https://lmcs.episciences.org/6973
https://lmcs.episciences.org/6973
https://doi.org/10.1016/0020-0255(69)90014-0
https://doi.org/10.1016/0020-0255(69)90014-0
https://doi.org/10.1017/s0956796800003841
https://doi.org/10.1017/s0956796800003841
https://doi.org/10.1017/s0956796800003841
https://doi.org/10.1017/s0956796800003841
https://doi.org/10.1137/S0097539794263452
https://doi.org/10.1137/S0097539794263452
https://doi.org/10.1145/3209108.3209124
https://doi.org/10.1145/3209108.3209124
https://doi.org/10.1145/2189778.2189780
https://doi.org/10.1145/2189778.2189780
https://doi.org/10.1016/0304-3975(93)90091-7
https://doi.org/10.1016/0304-3975(93)90091-7
https://doi.org/10.1016/0304-3975(93)90091-7
https://doi.org/10.1016/0304-3975(93)90091-7
https://doi.org/10.4230/LIPIcs.FSCD.2023.15
https://doi.org/10.4230/LIPIcs.FSCD.2023.15
https://doi.org/10.4230/LIPIcs.FSCD.2023.15
https://doi.org/10.4230/LIPIcs.FSCD.2023.15
https://doi.org/10.4230/LIPIcs.FSCD.2021.31
https://doi.org/10.4230/LIPIcs.FSCD.2021.31
http://id.nii.ac.jp/1001/00016864/

22 P. Baillot et al.

29. Lankford, D.S.: On proving term rewriting systems are noetherian. Memo MTP-3
(1979), https://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Lankford_
Poly_Term.pdf

30. Leivant, D.: A foundational delineation of computational feasiblity. In: Proceedings
of the Sixth Annual Symposium on Logic in Computer Science (LICS ’91), Amster-
dam, The Netherlands, July 15-18, 1991. pp. 2–11. IEEE Computer Society (1991).
https://doi.org/10.1109/LICS.1991.151625

31. Manna, Z., Ness, S.: On the termination of Markov algorithms. In: Proceedings of
the Third Hawaii International Conference on System Science. pp. 789–792 (1970)

32. Mehlhorn, K.: Polynomial and abstract subrecursive classes. J. Comput. Syst. Sci.
12(2), 147–178 (1976). https://doi.org/10.1016/S0022-0000(76)80035-9

33. Oitavem, I.: Implicit characterizations of pspace. In: Kahle, R., Schroeder-Heister,
P., Stärk, R.F. (eds.) Proof Theory in Computer Science, International Seminar,
PTCS 2001, Dagstuhl Castle, Germany, October 7-12, 2001, Proceedings. Lecture
Notes in Computer Science, vol. 2183, pp. 170–190. Springer (2001). https://doi.
org/10.1007/3-540-45504-3_11

34. Terese: Term rewriting systems, Cambridge tracts in theoretical computer science,
vol. 55. Cambridge University Press (2003)

A Innermost Compatibility Theorem for STRSs

In this section, we prove Theorem 1. The program is the same as in [26], with
some adaptations to the fact that we do not use lambdas and the cost component
is explicit as a cost′(·) function. Recall that in this paper, all rules are of base
type, i.e., they are fully applied. Since reduction is innermost, we have that for a
rule to be fired, the matching substitution (i.e., the substitution γ on the base
case ℓγ → rγ), does not map any variable to a term containing a redex. We
restrict to this type of substitutions and notice that cost′(xγ) = 0 for any variable
x.

We first make the following observation about our definitions:

Lemma 9. For all terms s t with t of base type: Js tKsα = JsKs(JtKs)α and Js tKcα,ζ =

JsKc(JtKs)α,ζ for all α, ζ.

Proof. By an easy case analysis: this holds both if s = x s1 · · · sn and s =
f s1 · · · sk t1 · · · tn (since t has base type, all higher-type arguments to f are given).

⊓⊔

Given a valuation α and substitution γ, we denote the γ-extention of α by
αγ ; the valuation defined by αγ(x) = JxγKsα. With that in mind we start with
some substitution lemmata.

Lemma 10. Let γ be a substitution mapping all variables to irreducible terms
and α be a valuation. Then, for any term s, JsγKsα = JsKsαγ .

Proof. By induction on the structure of s.

• If s is a variable, we have JxγKsα = αγ(x) = JxKsαγ .

https://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Lankford_Poly_Term.pdf
https://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Lankford_Poly_Term.pdf
https://doi.org/10.1109/LICS.1991.151625
https://doi.org/10.1109/LICS.1991.151625
https://doi.org/10.1016/S0022-0000(76)80035-9
https://doi.org/10.1016/S0022-0000(76)80035-9
https://doi.org/10.1007/3-540-45504-3_11
https://doi.org/10.1007/3-540-45504-3_11
https://doi.org/10.1007/3-540-45504-3_11
https://doi.org/10.1007/3-540-45504-3_11

On Basic Feasible Functionals and the Interpretation Method 23

• If s = t u is an application, we have

J(t u)γKs = JtγKsα(JuγK
s
α)

IH
= JtKsαγ (JuKsαγ) = Jt uKsαγ

⊓⊔

Let us move on to cost versions of substitution lemmata. First, notice that
we cannot directly define a γ-extention for cost valuations. Indeed, J·Kcα,ζ also
depends on a size valuation α. So given a size valuation α, we write ζγα to denote
the valuation ζγα = J·Kcα,ζ ◦ γ.

Lemma 11. Given cost–size valuations α, γ and a term s such that both s and
all its variables have a type of order at most 1. Then JsγKcα,ζ = JsKcαγ ,ζγ .

Proof. We consider two cases:

• For the first case, we get s = x s1 . . . sn, and
• If n = 0, we have JxγKcα,ζ = ζγα(x) = JxKcαγ ,ζγ by definition.
• If n > 0, we have

J(x s1 . . . sn)γK
c
α,ζ = J(xγ) (s1γ) . . . (snγ)K

c
α,ζ

lemma 9
= JxγKcα,ζ(Js1γK

s
α, . . . , JsnγK

s
α)

lemma 10
= JxKcαγ ,ζγ (Js1K

s
αγ , . . . , JsnKsαγ)

= J(x s1 . . . sn)K
c
αγ ,ζγ

• For the second case we have s = f s1 . . . sk t1 . . . tn. Recall that we fixed
f : (ι⃗1 ⇒ κ1) ⇒ · · · ⇒ (ι⃗k ⇒ κk) ⇒ ν1 ⇒ · · · ⇒ νl ⇒ ι as the general type
for f. Hence, since we consider s of type order at most 1, f must take at least
k arguments, and 0 ≤ n ≤ l.

J(f s1 . . . sk t1 . . . tn)γK
c
α,ζ

= Jf (s1γ) . . . (skγ) (t1γ) . . . (tnγ)K
c
α,ζ

= Jf(Js1γK
c
α,ζ , Js1γK

s
α, . . . , JskγK

c
α,ζ , JskγK

s
α, Jt1γK

s
α, . . . , JtnγK

s
α)

IH
= Jf(Js1K

c
αγ ,ζγ , Js1K

s
αγ , . . . , JskK

c
αγ ,ζγ , JskK

s
αγ , Jt1K

s
αγ , . . . , JtnKsαγ)

= Jf s1 . . . sk t1 . . . tnKcαγ ,ζγ

⊓⊔

Next, we connect the relationship between the two cost functions we defined.

Lemma 12. For any term s : ι so that both s and all its variables have type
order 0 or 1, and any normalized substitution γ, we have that cost(s)αγ ,ζγ ≥
cost′(sγ)α,ζ .

Proof. We again consider two cases:

24 P. Baillot et al.

• For the first case, let s = x s1 . . . sn. If n = 0 then cost(x)αγ ,ζγ = 0 by defini-
tion, and since we assumed that γ is normalized, also cost′(xγ)α,ζ = 0. If n > 0
and s has base type, then cost(s)αγ ,ζγ = ζγ(x)(Js1K

s
αγ ,ζγ , . . . , JsnKsαγ ,ζγ) +

Σn
i=1cost(si)αγ ,ζγ = Jγ(x)Kcα,ζ(Js1γK

s
α, . . . , JsnγK

s
α) + Σn

i=1cost(si)αγ ,ζγ by
Lemmas 10 and 11, which by Lemma 9 and the induction hypothesis
≥ J(xγ) (s1γ) · · · (snγ)Kc + Σn

i=1cost
′(siγ)α,ζ . Since xγ is in normal form,

either this is exactly cost′(sγ), or cost′(sγ) = 0 and we are done regardless. If
n > 0 and s does not have base type, we complete quickly with the induction
hypothesis.

• For the second case, let s = f s1 . . . sk t1 . . . tn We have two cases whether
sγ is in normal form or not. In the first case, cost′(sγ)α,ζ = 0 and certainly
cost(s)αγ ,ζγ ≥ 0. For the second case, s is not in normal form.
If s has base type, then:

cost(s)αγ ,ζγ = cost(f s1 . . . sk t1 . . . tn)αγ ,ζγ

= JsKcαγ ,ζγ +

k∑
i=1

cost(si)αγ ,ζγ +

n∑
j=1

cost(sj)αγ ,ζγ

lemma 11
= JsγKcα,ζ +

k∑
i=1

cost(si)αγ ,ζγ +

n∑
j=1

cost(sj)αγ ,ζγ

IH
≥ JsγKcα,ζ +

k∑
i=1

cost′(siγ)α,ζ +
n∑

j=1

cost′(sjγ)α,ζ

= cost′(sγ)α,ζ

If not, then:

cost(s)αγ ,ζγ =

k∑
i=1

cost(si)αγ ,ζγ +

n∑
j=1

cost(sj)αγ ,ζγ

IH
≥

k∑
i=1

cost′(siγ)α,ζ +
n∑

j=1

cost′(sjγ)α,ζ

= cost′(sγ)α,ζ
⊓⊔

The lemma below is restricted to type-1 terms and we assume that size
compatibility holds. This lemma is only needed in one specific step of the
inductive step prof of Theorem 1.

Lemma 13. Let (F,R) be a STRS satisfying the compatibility conditions of
Theorem 1 and s, t be type-1 terms of the same type. Assume that JsKsα ⊒ JtKsα.
Then JsKcα,ζ ≥ JtKcα,ζ whenever s→R t.

Proof. The proof is by induction on s→R t.

On Basic Feasible Functionals and the Interpretation Method 25

• For the base case we get:

JℓγKcα,ζ = JℓKcαγ ,ζγ

> cost(r)αγ ,ζγ , by compatibility

= JrKcαγ ,ζγ +
∑

JtKcαγ ,ζγ , where r ⊵ ti

≥ JrKcαγ ,ζγ = JrγKcα,ζby lemma 11

• For the second part, we recall that to get a type-1 term of arrow type, we
need to partially apply a function symbol or a variable, and since rules are of
base type, reduction does not occur at head position in s. Then we get two
cases:
• First, s = x s1 . . . sn, and assume w.l.g that x : ι1 ⇒ · · · ⇒ ιk ⇒ κ and
n < k. So we get x s1 . . . si . . . sn →R x s1 . . . si . . . sn with si →R s′i.

Jx s1 . . . si . . . snKcα,ζ = ζ(x)(Js1K
s
α, . . . , JsiK

s
α, . . . , JsnKsα)

⊒ ζ(x)(Js1K
s
α, . . . , Js

′
iK

s
α, . . . , JsnKsα)

= Jx s1 . . . s′i . . . snKcα,ζ

• The case for f s1 . . . si . . . sn is similar to the variable one, with the ob-
servation that by assumption JsiK

s
α ⊒ Js′iK

s holds. Then we use the
monotonicity of J s

f .
⊓⊔

Finally, we can state and prove the innermost compatibility theorem.

Theorem 1 (Innermost Compatibility). Suppose R is an STRS compatible
with a cost–size interpretation F , then for any valuations α and ζ we have
cost′(s)α,ζ > cost′(t)α,ζ and JsKsα ⊒ JtKsα whenever s→R t.

Proof. The proof follows by induction on the reduction s→R t.

Size Case.
• In the base case, we have s →R t by ℓγ → rγ. Then we combine the

substitution lemma with the compatibility requirement for size, i.e.,
JℓKsα ⊒ JrKsα, as follows:

JℓγKsα = JℓKsαγ ⊒ JrKsαγ = JrγKsα

• In the application case, we simply apply the induction hypothesis and
the fact that in Js tKs = JsKs(JtKs), the function JsKs is weakly monotonic.

Cost Case.

• For the base case, we have that

cost′(ℓγ)α,ζ = JℓγKcζ = JℓKcζγ > cost(r)αγ ,ζγ ≥ cost′(rγ)α,ζ

26 P. Baillot et al.

• For the application case with a variable root symbol, we have that
x t1 . . . ti . . . tn →R x t1 . . . t

′
i . . . tn with ti →R t′i. By induction we get

cost′(ti) > cost′(t′i) and also use the size part JtiK
s ⊒ Jt′iK

s. Then:

cost′(x t1 . . . ti . . . tn)α,ζ

= Jx t1 . . . ti . . . tnKcα,ζ +
n∑

j=1

cost′(tj)α,ζ

= ζ(x)(Js1K
s
α, . . . , JsiK

s
α, . . . , JsnKsα) +

∑
j=1...n
j ̸=i

cost′(tj)α,ζ + cost′(ti)α,ζ

≥ ζ(x)(Js1K
s
α, . . . , Js

′
iK

s
α, . . . , JsnKsα) +

∑
j=1...n
j ̸=i

cost′(tj)α,ζ + cost′(ti)α,ζ ,

> ζ(x)(Js1K
s
α, . . . , Js

′
iK

s
α, . . . , JsnKsα) +

∑
j=1...n
j ̸=i

cost′(tj)α,ζ + cost′(t′i)α,ζ

= cost′(x t1 . . . t
′
i . . . tn)α,ζ

• For the application case with a function root symbol where the reduction
is done in a base-type argument, we have that f s1 . . . sk t1 . . . ti . . . tn →R
f s1 . . . sk t1 . . . t

′
i . . . tn with ti →R t′i. Let us write s⃗ for s1 . . . sk and c(s)

for
k∑

j=1

cost′(si)α,ζ below. We also abuse notation and write Js⃗Kcα,ζ , Js⃗K
s
α

for Js1K
c
α,ζ , Js1K

s
α, . . . , JskK

c
α,ζ , JskK

s
α.

cost′(f s⃗ t1 . . . ti . . . tn)

= Jf s⃗ t1 . . . ti . . . tnKcα,ζ + c(s) +
n∑

j=1

cost′(tj)α,ζ

= J c
f (Js⃗K

c
α,ζ , Js⃗K

s
α, Jt1K

s
α, . . . , JtiK

s
α, . . . , JtnKsα) + c(s) +

n∑
j=1

cost′(tj)α,ζ

≥ J c
f (Js⃗K

c
α,ζ , Js⃗K

s
α, Jt1K

s
α, . . . , Jt

′
iK

s
α, . . . , JtnKsα) + c(s) +

n∑
j=1

cost′(tj)α,ζ

> cost′(f s⃗ t1 . . . t
′
i . . . tn)

where in the last step we use cost′(ti) > cost′(t′i), given by the IH.
• For the application case with a function root symbol where the reduction is

done in a higher-type argument, we have that f s1 . . . si . . . sk t1 . . . tn →R
f s1 . . . s

′
i . . . sk t1 . . . tn with si →R s′i. Recall that by IH we get cost′(si) >

cost′(s′i). Also, si is a type-1 term and here we are under the compatibility
conditions and JsiK

s ⊒ Js′iK
s is valid by the size part of the theorem. Hence

the conditions of Lemma 13 are satisfied, so we get JsiK
c ≥ Js′iK

c, as well.

On Basic Feasible Functionals and the Interpretation Method 27

With this in hand we reason as follows:

cost′(f s1 . . . si . . . sk t⃗)α,ζ

= J c
f (Js1K

c
α,ζ , Js1K

s
α, . . . , JsiK

c
α,ζ , JsiK

s
α . . . , JskK

c
α,ζ , JskK

s
α, J⃗tK

s

α)

+
∑

j=1...k,j ̸=i

cost′(sj) + cost′(si) +
n∑

j=1

cost′(tj)

by monotonicity of J c
f and JsiK

c ≥ Js′iK
c,JsiK

s ⊒ Js′iK
s, we get

≥ J c
f (Js1K

c
α,ζ , Js1K

s
α, . . . , Js

′
iK

c
α,ζ , Js

′
iK

s
α . . . , JskK

c
α,ζ , JskK

s
α, J⃗tK

s

α)

+
∑

j=1...k,j ̸=i

cost′(sj) + cost′(si) +
n∑

j=1

cost′(tj)

> J c
f (Js1K

c
α,ζ , Js1K

s
α, . . . , Js

′
iK

c
α,ζ , Js

′
iK

s
α . . . , JskK

c
α,ζ , JskK

s
α, J⃗tK

s

α)

+
∑

j=1...k,j ̸=i

cost′(sj) + cost′(s′i) +
n∑

j=1

cost′(tj)

= cost′(f s1 . . . s
′
i . . . sk t⃗)α,ζ

⊓⊔

B Interpretations for Section 5

B.1 Interpretations for section 5.3

The omitted interpretation functions in section 5.3 are:

J s
len = λλx.x J c

len = λλx.x+ 1
J s
max = λλnm.max(n,m) J c

max = λλnm.n+ 1
J s
limit = λλxn.n J c

limit = λλxn.n+ 1
J s
retif = λλxnz.z J c

retif = λλxnz.n+ 1

It is easy to see that the corresponding rules are all oriented.
For tryapply, note that tryapplyF a ⌜n⌝ reduces to ⌜|F(a)|⌝ if |a| ≤ n, and to

⌜0⌝ otherwise. Thus, it indeed returns exactly |F |{a}(n).

J s
tryapply = λλFan.F (n) J c

tryapply = λλF cF san.F c(n) + F s(n) + 2 ∗ n+ 4

We easily see that Jtryapply anKs = Jlen (retif an (F (limit an)))Ks. As for the cost,
note that

cost(len (retif an (F (limit an))))
= Jlen (retif an (F (limit an)))Kc + Jretif an (F (limit an))Kc +

JF (limit anKc + Jlimit anKc

= (F c(n) + 1) + (n+ 1) + F s(n) + (n+ 1) = F c(n) + F s(n) + 2n+ 3

Hence, also the tryapply rule is oriented.

28 P. Baillot et al.

To interpret sets and the apply rule, we use:

J s
∅ = 0 J c

∅ = 0 J s
setcons = λλxy.y + 1 J s

setcons = λλxy.0
J s
tryall = λλFan.F (n)

J c
tryall = λλF cF san.1 + a ∗ (F c(n) + 2 ∗ F s(n) + 2 ∗ n+ 6)

To see that the rule is oriented, note:

JtryallF (setcons a tl)nKs = F s(n)
= max(F s(n), F s(n))
= Jmax (tryapplyF an) (tryallF tl n)Ks

and

JtryallF (setcons a tl)nKc

= 1 + (tl + 1) ∗ (F c(n) + 2 ∗ F s(n) + 2 ∗ n+ 6)
= 1 + tl ∗ (F c(n) + 2 ∗ F s(n) + 2 ∗ n+ 6)

+ 1 ∗ (F c(n) + 2 ∗ F s(n) + 2 ∗ n+ 6)
= JtryallF tl nKc + (F c(n) + 2 ∗ F s(n) + 2 ∗ n+ 6)
= JtryallF tl nKc + JtryapplyF anKc + F s(n) + 2
= JtryallF tl nKc + JtryapplyF anKc + Jmax (tryapplyF an) (tryallF tl n)Kc + 1
> cost(max (tryapplyF an) (tryallF tl n))

B.2 Interpretations for section 5.4

We first supply the interpretation functions for the nnat symbols and the two
simple rules:

J s
o = 0 J c

o = 0
J s
n = λλx.x+ 1 J c

n = λλx.0
J s
extract = λλx.x J c

extract = λλx.x+ 2
J s
minus = λλxy.max(x− y, 0)

J c
minus = λλxy.x

These functions are all monotonic, and their rules are oriented (as can easily be
checked).

By induction on the polynomial P , we can find polynomials AP , BP such that
cost(ΘP

F ;z;a) ≤ JaKs ∗ AP (F
c, F s, JzKs) + BP (F

c, F s, JzKs), assuming F , z and a
are in normal form.

To define our remaining interpretation functions, first let:

• θF,z,n,m := max(PM (F s, z) + 1−m,n)
• POLYF,z[x] := x ∗APM+1(F

c, F s, JzKs) +BPM+1(F
c, F s, JzKs), so the polyno-

mial bounding cost(ΘPM+1
F ;z;a) if JaKs = x.

Then, we can orient the size interpretations of the rewrite rules by the following
interpretation:

J s
F = λλFn.n+ PM (F, n) + 1

J s
F′ = λλFzc.c+ PM (F, z) + 1

J s
execute = λλFnmzac.c+ θF,z,n,m

J s
execute′ = λλFnmzac.c+ 1 + θF,z,n,m

On Basic Feasible Functionals and the Interpretation Method 29

And the cost interpretations by:

J c
F = λλFn.(PM (F s, n) + 1) ∗ (

8 + 3 ∗ PM (F s, n) + 2 ∗ n+ F c(PM (F s, n) + n+ 1)+
POLYF,z[PM (F s, n) + 1]

) + 6 + 2 ∗ n+ POLYF,z[0]
J c
F′ = λλFzc.(PM (F s, z) + 1) ∗ (

8 + 3 ∗ PM (F s, z) + 2 ∗ c+ F c(PM (F s, z) + 1 + c)+
POLYF,z[PM (F s, z) + 1]

) + 4 + c+ POLYF,z[0]
J c
execute = λλFnmzac.θF,z,n,m ∗ (

5 + 2 ∗ (θF,z,n,m + c) + F c(θF,z,n,m + c)+
POLYF,z[θF,z,n,m + a] + PM (F s, z)

) + 3 + θF,z,n,m + c
J c
execute′ = λλFnmzac.(θF,z,n,m + 1) ∗ (

5 + 2 ∗ (θF,z,n,m + c+ 1) + F c(θF,z,n,m + c+ 1)+
POLYF,z[θF,z,n,m + a] + PM (F s, z)

) + 1

To see that these interpretations are correct, we first observe:

θF,z,sn,m = max(PM (F s, z) + 1−m,n+ 1)
= max(PM (F s, z) + 1− (m+ 1), n) + 1
= θF,z,n,m+1 + 1

(Because max(a+ 1, b+ 1) = max(a, b) + 1.) We also have, for all a:

θF,z,n,m = max(PM (F s, z) + 1−m,n)
≥ max(PM (F s, z) + 1−m, 0)
= max(PM (F s, z) + 1−m,max(PM (F s, z) + 1−m), 0)
= θ

F,z,JminusΘ
PM+1

F ;z;m K
s
,m

The inequalities now follow by writing out definitions.

	On Basic Feasible Functionals and the Interpretation Method
	Introduction
	Preliminaries
	Higher-Order Rewriting
	Cost–Size Interpretations
	Basic Feasible Functionals

	Statement of the Main Result
	Soundness
	Interpreting The Extended STRS, Polynomially
	Bounding The Oracle Input
	Graph Rewriting
	Bringing Everything Together

	Completeness
	Representing Configurations
	Executing The Machine
	A Bound on the Number of Steps
	Finalising Execution

	Conclusions and Future Work
	Innermost Compatibility Theorem for STRSs
	Interpretations for Section 5
	Interpretations for sec:completeness:bound
	Interpretations for sec:completeness:execution

