
Complexity Hierarchies and Higher-Order
Cons-Free Rewriting∗

Cynthia Kop and Jakob Grue Simonsen

Department of Computer Science, University of Copenhagen (DIKU)
{kop,simonsen}@di.ku.dk

Abstract
Constructor rewriting systems are said to be cons-free if, roughly, constructor terms in the right-
hand sides of rules are subterms of constructor terms in the left-hand side; the computational
intuition is that rules cannot build new data structures. It is well-known that cons-free program-
ming languages can be used to characterize computational complexity classes, and that cons-free
first-order term rewriting can be used to characterize the set of polynomial-time decidable sets.

We investigate cons-free higher-order term rewriting systems, the complexity classes they
characterize, and how these depend on the order of the types used in the systems. We prove that,
for every k ě 1, left-linear cons-free systems with type order k characterize EkTIME if arbitrary
evaluation is used (i.e., the system does not have a fixed reduction strategy).

The main difference with prior work in implicit complexity is that (i) our results hold for
non-orthogonal term rewriting systems with possible rule overlaps with no assumptions about
reduction strategy, (ii) results for such term rewriting systems have previously only been obtained
for k “ 1, and with additional syntactic restrictions on top of cons-freeness and left-linearity.

Our results are apparently among the first implicit characterizations of the hierarchy E “

E1TIME Ĺ E2TIME Ĺ ¨ ¨ ¨ . Our work confirms prior results that having full non-determinism
(via overlaps of rules) does not directly allow characterization of non-deterministic complexity
classes like NE. We also show that non-determinism makes the classes characterized highly
sensitive to minor syntactic changes such as admitting product types or non-left-linear rules.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.4.2 Grammars and
Other Rewriting Systems

Keywords and phrases higher-order term rewriting, implicit complexity, cons-freeness, ETIME
hierarchy

Digital Object Identifier 10.4230/LIPIcs.FSCD.2016.49

1 Introduction

In [14], Jones introduces cons-free programming: working with a small functional programming
language, cons-free programs are exactly those where function bodies cannot contain use
of data constructors (the “cons” operator on lists). Put differently, a cons-free program is
read-only: data structures cannot be created or altered, only read from the input; and any
data passed as arguments to recursive function calls must thus be part of the original input.

The interest in such programs lies in their applicability to computational complexity: by
imposing cons-freeness, the resulting set of programs can only decide the sets in a proper
subclass of the Turing-decidable sets, indeed are said to characterize the subclass. Jones

∗ The authors are supported by the Marie Skłodowska-Curie action “HORIP”, program H2020-MSCA-IF-
2014, 658162 and by the Danish Council for Independent Research Sapere Aude grant “Complexity via
Logic and Algebra” (COLA).

© Cynthia Kop and Jakob Grue Simonsen;
licensed under Creative Commons License CC-BY

1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016).
Editors: Brigitte Pientka and Delia Kesner; Article No. 49; pp. 49:1–49:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.49
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


49:2 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

goes on to show that adding further restrictions such as type order or enforcing tail recursion
lowers the resulting expressiveness to known classes. For example, cons-free programs with
data order 0 can decide exactly the sets in PTIME, while tail-recursive cons-free programs
with data order 1 can decide exactly the sets in PSPACE. The study of such restrictions and
the complexity classes characterized is a research area known as implicit complexity and has
a long history with many distinct approaches (see, e.g., [4, 6, 5, 7, 8, 12, 17]).

Rather than a toy language, it is tantalizing to consider term rewriting instead. Term
rewriting systems have no fixed evaluation order (so call-by-name or call-by-value can be
introduced as needed, but are not required); and term rewriting is natively non-deterministic,
allowing distinct rules to be applied (“functions to be invoked”) to the same piece of syntax,
hence could be useful for extensions towards non-deterministic complexity classes. Implicit
complexity using term rewriting has seen significant advances using a plethora of approaches
(e.g. [1, 2, 3]). Most of this research has, however, considered fixed evaluation orders (most
prominently innermost reduction), and if not, then systems which are either orthogonal, or
at least confluent (e.g. [2]). Almost all of the work considers only first-order rewriting.

The authors of [11] provide a first definition of cons-free term rewriting without constraints
on evaluation order or confluence requirements, and prove that this class—limited to first-
order rewriting—characterizes PTIME. However, they impose a rather severe partial linearity
restriction on the programs. This paper seeks to answer two questions: (i) what happens if no
restrictions beyond left-linearity and cons-freeness are imposed? And (ii) what if higher-order
term rewriting—including bound variables as in the lambda calculus—is allowed? We obtain
that kth-order cons-free term rewriting exactly characterizes EkTIME. This is surprising
because in Jones’ rewriting-like language, kth-order programs characterize EXPk´1TIME:
surrendering both determinism and evaluation order thus significantly increases expressivity.

Note that an appendix containing full proofs is included at the end of the paper.

2 Preliminaries

2.1 Computational complexity
We presuppose introductory working knowledge of computability and complexity theory
(corresponding to standard textbooks, e.g., [13]). Notation is fixed below.

Turing Machines (TMs) are triples pA,S, T q where A is a finite set of tape symbols such
that A Ě I Y t␣u, where I Ě t0, 1u is a set of initial symbols and ␣ R I is the special blank
symbol; S Ě tstart, accept, rejectu is a finite set of states, and T is a finite set of transitions
pi, r, w, d, jq with i P Sztaccept, rejectu (the original state), r P A (the read symbol), w P A
(the written symbol), d P tL, Ru (the direction), and j P S (the result state). We sometimes
write this transition as i

r{w d
““ùñ j. All TMs in the paper are deterministic and (which we can

assume wlog.) do not get stuck: for every pair pi, rq with i P Sztaccept, rejectu and r P A
there is exactly one transition pi, r, w, d, jq. Every TM has a single, right-infinite tape.

A valid tape is a right-infinite sequence of tape symbols with only finitely many not ␣. A
configuration of a TM is a triple pt, p, sq with t a valid tape, p P N and s P S. The transitions
T induce a binary relation ñ between configurations in the obvious way.

A TM with input alphabet I decides X Ď I` if for any string x P I`, we have x P X
iff p␣x1 . . . xn␣␣ . . . , 0, startq ñ˚ pt, i, acceptq for some t, i, and p␣x1 . . . xn␣␣ . . . , 0, startq
ñ˚ pt, i, rejectq otherwise (i.e., the machine halts on all inputs, ending in accept or reject
depending on whether x P X). If f : N ÝÑ N is a function, a (deterministic) TM runs in
time λn.fpnq if, for each n P Nzt0u and each x P In: p␣x␣␣ . . . , 0, startq ñďfpnq pt, i, sq for
s P taccept, rejectu, where ñďfpnq denotes a sequence of at most fpnq transitions.



C. Kop and J. G. Simonsen 49:3

Complexity and the ETIME hierarchy

For k, n ě 0, let exp0
2pnq “ n and expk`1

2 pnq “ 2expk2 pnq “ expk2p2nq.

§ Definition 1. Let f : N ÝÑ N be a function. Then, TIME pfpnqq is the set of all S Ď t0, 1u`
such that there exist a ą 0 and a deterministic TM running in time λn.a ¨fpnq that decides S
(i.e., S is decidable in time Opfpnqq). For k ě 1 define: EkTIME fi

Ť

aPN TIME
`

expk2panq
˘

Observe in particular that E1TIME “
Ť

aPN TIME
`

exp1
2panq

˘

“
Ť

aPN TIME p2anq “ E
(where E is the usual complexity class of this name, see e.g., [19, Ch. 20]).

Note that for any d, k ě 1, we have pexpk2pxqqd “ 2d¨expk´1
2 pxq ď 2expk´1

2 pdxq “ expk2pdxq.
Hence, if P is a polynomial with non-negative integer coefficients and the set S Ď t0, 1u` is
decided by an algorithm running in time OpP pexpk2panqqq for some a P N, then S P EkTIME.

Using the Time Hierarchy Theorem [20], it is easy to see that E “ E1TIME Ĺ E2TIME Ĺ
E3TIME Ĺ ¨ ¨ ¨ . The union

Ť

kPN EkTIME is the set ELEMENTARY of elementary languages.

2.2 Higher-order rewriting
Unlike first-order term rewriting, there is no single, unified approach to higher-order term
rewriting, but rather a number of different co-extensive systems with distinct syntax; for an
overview of basic issues, see [21]. We will use Algebraic Functional Systems (AFSs) [15, 9],
in the simplest form (which disallows partial applications). However, our proofs do not use
any particular features of AFSs that preclude using different higher-order formalisms.

Types and Terms

We assume a non-empty set S of sorts, and define types and type orders as follows: (i) every
ι P S is a type of order 0 ; (ii) if σ, τ are types of order n and m respectively, then σ ñ τ is
a type of order maxpn` 1,mq. Here ñ is right-associative, so σ ñ τ ñ π should be read
σ ñ pτ ñ πq. A type declaration of order k ě 0 is a tuple rσ1 ˆ ¨ ¨ ¨ ˆ σns ñ ι with all σi
types of order at most k ´ 1, and ι P S; if n “ 0 this declaration may simply be denoted ι.

We additionally assume given disjoint sets F of function symbols and V of variables. Each
symbol in F is associated with a unique type declaration, and each variable in V with a
unique type. The set T pF ,Vq of terms over F and V consists of those expressions s such
that $ s : σ can be derived for some type σ using the following clauses:

(var) $ x : σ if x : σ P V
(app) $ s ¨ t : τ if s : σ ñ τ and t : σ
(abs) $ λx.s : σ ñ τ if x : σ P V and s : τ
(fun) $ fps1, . . . , snq : ι if f : rσ1 ˆ . . .ˆ σns ñ ι P F and s1 : σ1, . . . , sn : σn

Clearly, each term has a unique type. Note that a function symbol f : rσ1ˆ . . .ˆ σns ñ ι

takes exactly n arguments, and its output type ι is a sort. The abstraction construction λx.s
binds occurrences of x in s as in the λ-calculus, and α-conversion is defined for terms mutatis
mutandis; we identify terms modulo α-conversion, renaming bound variables if necessary.
Application is left-associative. The set of variables of s which are not bound is denoted
FV psq. A term s is closed if FV psq “ H. We say that a term s has base type if $ s : ι P S.

§ Example 2. We will often use extensions of the signature Fstring, given by:

true : bool 0 : rstrings ñ string � : string
false : bool 1 : rstrings ñ string

Terms are for instance true, λx.0p1pxqq and pλx.0pxqq ¨ 1pyq. The first and last of these
terms have base type, and the first two are closed; the last one has y as a free variable.

FSCD 2016



49:4 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

A substitution is a type-preserving map from V to T pF ,Vq which is the identity on all but
finitely many variables. Substitutions γ are extended to arbitrary terms s, notation sγ, by
using α-conversion to rename all bound variables in s to fresh ones, then replacing each
unbound variable x by γpxq. A context Crs is a term in T pF ,Vq in which a single occurrence
of a variable is replaced by a symbol l R F YV . The result of replacing l in Crs by a term s

(of matching type) is denoted Crss. Free variables may be captured; e.g. pλx.lqrxs “ λx.x.
If s “ Crts we say that t is a subterm of s, notation t� s, or t� s if Crs ‰ l.

Rules and Rewriting

A rule is a pair `Ñ r of terms in T pF ,Vq with the same sort (i.e. $ ` : ι and $ r : ι for some
ι P S), such that ` has the form fp`1, . . . , `nq with f P F and such that FV prq Ď FV p`q. A
rule `Ñ r is left-linear if every variable occurs at most once in `. We assume given a set R
of rules, and define the one-step rewrite relation ÑR on T pF ,Vq as follows:

Cr`γs ÑR Crrγs with `Ñ r P R, C a context, γ a substitution
Crpλx.sq ¨ ts ÑR Crsrx :“ tss

We may write sÑβ t for a rewrite step using (beta). Let Ñ`
R denote the transitive closure

of ÑR and Ñ˚
R the transitive-reflexive closure. We say that s reduces to t if sÑR t. A term

s is in normal form if there is no t such that sÑR t, and t is a normal form of s if sÑ˚
R t

and t is in normal form. An AFS is a pair pF ,Rq, generating a set of terms and a reduction
relation. The order of an AFS is the maximal order of any type declaration in F .

§ Example 3. Recall the signature Fstring from Example 2; let Fcount be its extension with
succ : rstrings ñ string. We consider the AFS pFcount,Rcountq with the following rules:

pAq succp�q Ñ 1p�q pBq succp0pxsqq Ñ 1pxsq
pCq succp1pxsqq Ñ 0psuccpxsqq

This is a first-order AFS, implementing the successor function on a binary number expressed
as a bitstring with the least significant digit first. For example, 5 is represented by 1p0p1p�qqq,
and indeed succp1p0p1p�qqqq ÑR 0psuccp0p1p�qqqq ÑR 0p1p1p�qqq, which represents 6.

§ Example 4. Alternatively, we may define a bit-sequence as a function: let Fhocount be the
extension of Fstring with not : rbools ñ bool, ite : rbool ˆ bool ˆ bools ñ bool and
all, succ : rpbool ñ boolq ˆ strings ñ string. Let Rhocount consist of:

pAq iteptrue, x, yq Ñ x pCq notpxq Ñ itepx, false, trueq
pBq itepfalse, x, yq Ñ y pDq allpF,�q Ñ F ¨�

pEq allpF, apxsqq Ñ itepF ¨ apxsq, allpF, xsq, falseq Jfor a P t0, 1uK
pFq succpF,�q Ñ notpF ¨�q
pGq succpF, apxsqq Ñ itepallpF, xsq, notpF ¨ apxsqq, F ¨ apxsqq Jfor a P t0, 1uK

Note that pEq and pGq each represent two rules: one for each choice of a. This AFS is second-
order, due to all and succ. A function F represents a (potentially infinite) binary number,
with the ith bit given by F ¨ t for any bitstring t of length i (counting from i “ 0, so t “ �).
Thus, the number 0 is represented by, e.g., λx.false, and 1 by ONE ::“ λx.succpλy.false, xq.
Indeed ONE ¨ � “ pλx.succpλy.false, xqq ¨ � Ñβ succpλy.false,�q ÑR notppλy.falseq ¨
�q Ñβ notpfalseq ÑR true, and ONE ¨ 0kp�q Ñ˚

R false for k ą 0.

We fix a partitioning of F into two disjoint sets, D of defined symbols and C of constructor
symbols, such that f P D for all fp~̀q Ñ r P R. A term s is a constructor term if it is in
T pC,Vq and a proper constructor term if it also contains no applications or abstractions. A



C. Kop and J. G. Simonsen 49:5

closed proper constructor term is also called a data term. The set of data terms is denoted
DA. Note that data terms are built using only clause (fun). A term fps1, . . . , snq with f P D
and each si P DA is called a basic term. A constructor rewriting system is an AFS where
each rule fp`1, . . . , `nq Ñ r P R satisfies that all `i are proper constructor terms (and f P D).
An AFS is a left-linear constructor rewriting system if moreover each rule is left-linear.

In a constructor rewriting system, β-reduction steps can always be done prior to other
steps: if s has a normal form q and sÑβ t, then also tÑ˚

R q. Therefore we can (and will!)
safely assume that the right-hand sides of rules are in normal form with respect to Ñβ .

§ Example 5. The AFSs from Examples 3 and 4 are left-linear constructor rewriting systems.
In Example 3, C “ Fstring and D “ tsuccu. If a rule 0p�q Ñ � were added to Rcount, it
would no longer be a constructor system, as this would force 0 to be in D, conflicting with
rule pBq. A rule such as equalpxs, xsq Ñ true would break left-linearity.

§ Remark. Constructor rewriting systems—typically left-linear—are very common both in
the literature on term rewriting and in functional programming, where similar restrictions
are imposed. Left-linear systems are well-behaved: contraction of non-overlapping redexes
cannot destroy redexes that they themselves are arguments of. Constructor systems avoid
non-root overlaps, and allow for a clear split between data and intermediate terms.

They are, however, less common in the literature on higher-order term rewriting, and the
notion of a proper constructor term is new for AFSs (although the exclusion of abstractions
and applications in the left-hand sides roughly corresponds to fully extended pattern HRSs
in Nipkow’s style of higher-order rewriting [18]).

Deciding problems using rewriting

Like Turing Machines, an AFS can decide a set X Ď I` (where I is a finite set of symbols).
Consider AFSs with a signature F “ C Y D where C contains symbols � : string, true :
bool, false : bool and a : rstrings ñ string for all a P I. There is an obvious correspon-
dence between elements of I` and data terms of sort string; if x P I`, we write x for the
corresponding data term. The AFS accepts D Ď I` if there is a designated defined symbol
decide : rstrings ñ bool such that, for every x P I` we have decidepxq Ñ˚

R true iff x P D.
More generally, we are interested in the reductions of a given basic term to a data term.

We use the acceptance criterion above—reminiscent of the acceptance criterion of non-
deterministic Turing machines—because term rewriting is inherently non-deterministic unless
further constraints (e.g., orthogonality) are imposed. Thus, an input x is “rejected” by
a rewriting system iff there is no reduction to true from decidepxq; and as evaluation is
non-deterministic, there may be many distinct reductions starting from decidepxq.

3 Cons-free rewriting

Since the purpose of this research is to find groups of programs which can handle restricted
classes of Turing-computable problems, we will impose certain limitations. In particular, we
will limit interest to cons-free left-linear constructor rewriting systems.

§ Definition 6. A rule `Ñ r, presented using α-conversion in a form where all binders are
distinct from FV p`q, is cons-free if for all subterms s “ fps1, . . . , snq� r with f P C, we have
s� ` or s P DA. A left-linear constructor AFS pF ,Rq is cons-free if all rules in R are.

This definition corresponds largely to the definitions of cons-freeness appearing in [11, 14].
In a cons-free AFS, it is not possible to create more data, as we will see in Section 3.1.

FSCD 2016



49:6 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

§ Example 7. The AFS from Example 3 is not cons-free due to rules (B) and (C). The
AFS from Example 4 is cons-free (in rules (E) and (G), apxsq is allowed to occur on the
right despite the constructor a, because it also occurs on the left). However, there are few
interesting basic terms, as we do not consider for instance succpλx.false,�q basic.

§ Remark. The limitation to left-linear constructor AFSs is standard, but also necessary: if
either restriction is dropped, our limitation to cons-free AFSs becomes meaningless. In the
case of constructor systems, this is obvious: if defined symbols are allowed to occur within a
left-hand side, then we could simply let D :“ F and have a “cons-free” system. The case of
left-linearity is a bit more sophisticated; this we will study in more detail in Section 6.

As the first two restrictions are necessary to give meaning to the third, we will consider
the limitation to left-linear constructor AFSs implicit in the notion “cons-free”.

3.1 Properties of Cons-free Term Rewriting
As mentioned, cons-free term rewriting cannot create new data. This means that the set of
data terms that might occur during a reduction starting in some basic term s are exactly the
data terms occurring in s, or those occurring in the right-hand side of some rule. Formally:

§ Definition 8. Let pF ,Rq be a constructor AFS. For a given term s, the set Bs contains all
data terms t such that (i) s� t, or (ii) r � t for some rule `Ñ r P R.

Bs is a set of data terms, is closed under subterms and, since we have assumed R to be
fixed, has a linear number of elements in the size of s. The property that no new data is
generated by reducing s is formally expressed by the following result:

§ Definition 9 (B-safety). Let B Ď DA be a set which (i) is closed under taking subterms,
and (ii) contains all data terms occurring as a subterm of the right-hand side of a rule in R.
A term s is B-safe if for all t with s� t: if t has the form cpt1, . . . , tmq with c P C, then t P B.

§ Lemma 10. If s is B-safe and sÑR t, then t is B-safe.

Proof Sketch. By induction on the form of s; the result follows trivially by the induction
hypothesis if the reduction does not take place at the root, leaving only the base cases
s “ pλx.uq ¨ v ÑR urx :“ vs “ t and s “ `γ ÑR rγ “ t. The first of these is easy by
induction on the form of the (B-safe!) term u, the second follows by induction on the form
of r (which, as the right-hand side of a cons-free rule, has convenient properties). đ

Thus, if we start with a basic term fp~sq, any data terms occurring in a reduction fp~sq Ñ˚
R t

(directly or as subterms) are in Bfp~sq. This insight will be instrumental in Section 5.

§ Example 11. By Lemma 10, functions in a cons-free AFSs cannot build recursive data. To
code around this, we might use subterms of the input as a measure of length. Consider the
decision problem whether a given bitstring is a palindrome. We cannot use a rule such as
decidepcsq Ñ equalpcs, reversepcsqq since, by Lemma 10, it is impossible to define reverse.
Instead, a typical solution uses a string ys of length k to find ck in c0 . . . cn´1:

decidepcsq Ñ palindromepcs, csq
palindromepcs,�q Ñ true

palindromepcs, apysqq Ñ andppalindromepcs, ysq, chkapcs, ysqq Ja P t0, 1uK
andptrue, xq Ñ x chkapapxsq,�q Ñ true Ja P t0, 1uK

andpfalse, xq Ñ false chkapbpxsq,�q Ñ false Ja, b P t0, 1u ^ a ‰ bK
chkapbpxsq, cpysqq Ñ chkapxs, ysq Ja, b, c P t0, 1uK

(The signature extends Fstring, but is otherwise omitted as types can easily be derived.)



C. Kop and J. G. Simonsen 49:7

Through cons-freeness, we obtain another useful property: we do not have to consider
constructors which take functional arguments.

§ Lemma 12. Given a cons-free AFS pF ,Rq with F “ DY C, let Y “ tc : rσ1ˆ ¨ ¨ ¨ ˆ σns ñ

ι P C some σi is not a sortu. Define F 1 :“ FzY , and let R1 consist of those rules in R not
using any element of Y in either left- or right-hand side. Then (a) all data and B-safe terms
are in T pF 1,Hq, and (b) if s is a basic term and sÑ˚

R t, then t P T pF 1,Vq and sÑ˚
R1 t.

Proof. Since data terms have base type, and the subterms of data terms are data terms, we
have (a). Then, B-safe terms can only be matched by rules in R1, so Lemma 10 gives (b). đ

Therefore we may safely assume that all elements of C are at most first-order.

3.2 A larger example
None of our examples so far have taken advantage of the native non-determinism of term
rewriting. To demonstrate the possibilities, we consider a first-order cons-free AFS that solves
the Boolean satisfiability problem (SAT). This is striking because, in Jones’ language in [14],
first-order programs cannot solve this problem unless P = NP, even if a non-deterministic
choose operator is added [10]. The crucial difference is that we, unlike Jones, do not employ
a call-by-value evaluation strategy.

Given n boolean variables x1, . . . , xn and a boolean formula ψ ::“ ϕ1 ^ ¨ ¨ ¨ ^ ϕn, the
satisfiability problem considers whether there is an assignment of each xi to J or K such
that ψ evaluates to J. Here, each clause ϕi has the form ai1 _ ¨ ¨ ¨ _ aiki , where each literal
aij is either some xp or  xp. We represent this problem as a string over I :“ t0, 1,#, ?u:
the formula ψ is represented by L ::“ b1,1 . . . b1,n#b2,1 . . .#bm,1 . . . bm,n#, where each bi,j is
1 if xj is a literal in ϕi, is 0 if  xj is a literal in ϕi, and is ? otherwise.

§ Example 13. The satisfiability problem for px1_ x2q^px2_ x3q is encoded as 10?#?10#.

Letting 0, 1,#, ? : rstrings ñ string, and assuming other declarations clear from
context, we claim that the AFS in Figure 1 can reduce decidepLq to true iff ψ is satisfiable.

eqp#pxsq,#pysqq Ñ true eqp#pxsq, apysqq Ñ false
eqpapxsq, bpysqq Ñ eqpxs, ysq eqpapxsq,#pysqq Ñ false

*

Jfor a, b P t0, 1, ?uK

decidepcsq Ñ assignpcs,�,�, csq
assignp#pxsq, s, t, csq Ñ mainps, t, csq
assignpapxsq, s, t, csq Ñ assignpxs, eitherpapxsq, sq, t, csq
assignpapxsq, s, t, csq Ñ assignpxs, s, eitherpapxsq, tq, csq

*

Jfor a P t0, 1, ?uK

eitherpxs, qq Ñ xs eitherpxs, qq Ñ q

mainps, t, ?pxsqq Ñ mainps, t, xsq
mainps, t, 0pxsqq Ñ testps, t, xs, eqpt, 0pxsqq, eqps, 0pxsqqq
mainps, t, 1pxsqq Ñ testps, t, xs, eqps, 1pxsqq, eqpt, 1pxsqqq

mainps, t,�q Ñ true testps, t, xs, true, zq Ñ mainps, t, skippxsqq
mainps, t,#pxsqq Ñ false testps, t, xs, z, trueq Ñ mainps, t, xsq

skipp#pxsqq Ñ xs

skippapxsqq Ñ skippxsq Jfor a P t0, 1, ?uK

Figure 1 A cons-free first-order AFS solving the satisfiability problem

FSCD 2016



49:8 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

In this AFS, we follow some of the same ideas as in Example 11. In particular, any string
of the form bi . . . bn# . . . with each bj P t0, 1, ?u is considered to represent the number i. The
rules for eq are defined so that eqps, tq tests equality of these numbers, not the full strings.

The key idea new to this example is that we use terms not in normal form to represent a
set of numbers. If we are interested in numbers in t1, . . . , nu, then a set X Ď t1, . . . , nu is
encoded as a pair ps, tq of terms such that, for i P t1, . . . , nu: sÑ˚

R q for some representation
q of i if and only if i P X, and tÑ˚

R q for some representation q of i if and only if i R X.
This is possible because we do not use a call-by-value or similar reduction strategy: an

evaluation of this AFS is allowed to postpone reducing such terms, and we focus on those
reductions. The AFS is constructed in such a way that reductions which evaluate these “sets”
too eagerly simply end in an irreducible, non-data state.

Now, an evaluation starting in decidepLq first non-deterministically constructs a “set”X
containing those boolean variables assigned true: decidepLq Ñ˚

R mainps, t, Lq. Then, the
main function goes through L, finding for each clause a literal that is satisfied by the
assignment. Encountering for instance bij “ 1, we determine if j P X by comparing both a
reduct of s and of t to j. If sÑ˚

R “j” then j P X, if tÑ˚
R “j” then j R X; in either case, we

continue accordingly. If the evaluation state is incorrect, or if s or t both non-deterministically
reduce to some other term, the evaluation gets stuck in a non-data normal form.

§ Example 14. To solve satisfiability of px1 _  x2q ^ px2 _  x3q, we reduce decidepLq,
where L “ 10?#?10#. First, we build a valuation; the choices made by the assign rules
are non-deterministic, but a possible reduction is decidepLq Ñ˚

R mainps, t, Lq, where s “
eitherp10?#?10#,�q and t “ eitherp?#?10#, eitherp0?#?10#,�qq. Recall that, since
n “ 3, 10?#?10# represents 1 while ?#?10# and 0?#?10# represent 3 and 2 respectively.
Thus, this corresponds to the valuation rx1 :“ J, x2 :“ K, x3 :“ Ks.

Then, the main loop recurses over the problem. Note that s reduces to a term 10?# . . . and
t reduces to both ?# . . . and 0?# . . .. Therefore, mainps, t, Lq “ mainps, t, 11?#?01#q Ñ˚

R
mainps, t, skipp1?#?01#qq Ñ˚

R mainps, t, ?01#q: the first clause is confirmed since x1 is
mapped to J, so the clause is removed and the loop continues with the second clause. Next,
the loop passes over those variables whose assignment does not contribute to verifying
this clause, until the clause is confirmed by x3: mainps, t, ?01#q ÑR mainps, t, 01#q Ñ˚

R
mainps, t, 1#q Ñ˚

R mainps, t, skipp#qq ÑR mainps, t,�q ÑR true.

Using non-determinism, the term in Example 14 could easily have been reduced to false
instead, simply by selecting a different valuation. This is not problematic: by definition,
the AFS accepts the set of satisfiable formulas if decidepLq Ñ˚

R true if and only if L is a
satisfiable formula: false negatives or reductions which do not end in a data state are allowed.

A longer example derivation is given in Appendix B.

4 Simulating EkTIME Turing machines

In order to see that cons-free term rewriting captures certain classes of decidable sets, we will
simulate Turing Machines. For this, we use an approach very similar to that by Jones [14].
We introduce constructor symbols a : rstrings ñ string for all a P A (including the
blank symbol, which we shall refer to as B) along with � and the booleans, s : state for
all s P S Y tfailu, L, R : direction and action : rstring ˆ direction ˆ states ñ trans,
end : rstates ñ trans, NA : trans. We will introduce defined symbols and rules such that,
for any string c P pAzt␣uq˚—represented as the term cs :“ c1pc2p¨ ¨ ¨ cnp�q ¨ ¨ ¨ qq—we have:

decidepcsq Ñ˚
R true if and only if p␣c␣␣ . . . , 0, startq ñ˚ pt, i, acceptq for some t, i;



C. Kop and J. G. Simonsen 49:9

decidepcsq Ñ˚
R false if and only if p␣c␣␣ . . . , 0, startq ñ˚ pt, i, rejectq for some t, i.

As rules may be overlapping, it is possible that decidepcsq will have additional normal forms,
but only one normal form will be a data term.

The rough idea of the simulation is to represent non-negative integers as terms and let
tapepn, pq reduce to the symbol at position p on the tape at the start of the nth step, while
statepn, pq returns the state of the machine at time n, provided the tape head is at position
p. If the tape head of the machine is not at position p at time n, then statepn, pq should
return fail instead; this makes it possible to test the position of the tape head at any given
time. As the machine is deterministic, we can devise rules to compute these terms from
earlier configurations.

Finding a suitable representation of integers and corresponding manipulating functions is
the most intricate part of this simulation, where we may need both higher-order functions
and non-deterministic rules. Therefore, let us first assume that this can be done. Then, for a
Turing machine which is given to run in time bounded above by λx.P pxq, we define the AFS
in Figure 2. Note that, by construction, any occurrence of cs can only be instantiated by the
input string during evaluation.

ifelseιptrue, y, zq Ñ y

ifelseιpfalse, y, zq Ñ z

*

Jfor ι P tstring, stateuK

getp�, ris, qq Ñ q

getpapxsq, ris, qq Ñ ifelsestringpri “ 0s, ap�q, getpxs, ri´ 1s, qqq Jfor all a P IK

inputtapepcs, rpsq Ñ ifelsestringprp “ 0s, Bp�q, getpcs, rp´ 1s, Bp�qqq

tapepcs, rns, rpsq Ñ ifelsestringprn “ 0s, inputtapepcs, rpsq, tapexpcs, rn´ 1s, rpsqq
tapexpcs, rns, rpsq Ñ tapeypcs, rns, rps, transitionpcs, rns, rpsqq

tapeypcs, rns, rps, actionpq, d, sqq Ñ q tapeypcs, rns, rps, NAq Ñ tapepcs, rns, rpsq
tapeypcs, rns, rps, endpsqq Ñ tapepcs, rns, rpsq

statepcs, rns, rpsq Ñ ifelsestateprn “ 0s, state0pcs, rpsq, statexpcs, rn´ 1s, rpsqq
state0pcs, rpsq Ñ ifelsestateprp “ 0s, start, failq

statexpcs, rns, rpsq Ñ stateyptransitionpcs, rns, rp´ 1sq, transitionpcs, rns, rpsq,
transitionpcs, rns, rp` 1sqq

stateypactionpq, R, sq, y, zq Ñ s stateypNA, actionpq, d, sq, zq Ñ fail
stateypactionpq, L, sq, y, zq Ñ fail stateypNA, NA, actionpq, L, sqq Ñ s

stateypendpsq, y, zq Ñ fail stateypNA, NA, actionpq, R, sqq Ñ fail
stateypNA, endpsq, zq Ñ s stateypNA, NA, endpsqq Ñ fail

transitionpcs, rns, rpsq Ñ transitionhelppstatepcs, rns, rpsq, tapepcs, rns, rpsqq
transitionhelppfail, qq Ñ NA
transitionhelpps, rp�qq Ñ actionpwp�q, d, tq Jfor all s

r{w d
““ùñ t P T K

transitionhelpps, qq Ñ endpsq Jfor s P taccept, rejectuK

decidepcsq Ñ findanswerpcs, rP p|cs|qs, rP p|cs|qsq
findanswerpcs, rns, rpsq Ñ testpstatepcs, rns, rpsq, cs, rns, rpsq

testpfail, cs, rns, rpsq Ñ findanswerpcs, rns, rp´ 1sq
testpaccept, cs, rns, rpsq Ñ true
testpreject, cs, rns, rpsq Ñ false

Figure 2 Simulating a deterministic Turing Machine running in λx.P pxq time.

FSCD 2016



49:10 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

Counting

The goal, then, is to find a representation of numbers and functionality to do four things:

calculate rP p|cs|qs or an overestimation (as the machine cannot move from its final state);
test whether a “number” represents 0;
given rns, calculate rn´ 1s, provided n ą 0—so it suffices to determine rmaxpn´ 1, 0qs;
given rns, calculate rn`1s, provided n`1 ď P p|cs|q as necessarily transitionpcs, rns, rpsq
ÑR NA when n ă p and n never increases—so it suffices to determine rminpn`1, P p|cs|qqs.

Moreover, these calculations all occur in the right-hand side of a rule containing the initial
input list cs on the left, which they can therefore use (for instance to recompute P p|cs|q).

Rather than representing a number by a single term, we will use tuples of terms (which are
not terms themselves, as a pairing constructor would conflict with cons-freeness). To illustrate
this, suppose we represent each number n by a pair pn1, n2q. Then the predecessor and
successor function must also be split, e.g. pred1pcs, n1, n2q Ñ

˚
R n11 and pred2pcs, n1, n2q Ñ

˚
R

n12 for pn11, n12q some tuple representing n´ 1. Thus, for instance the first test rule becomes:

testpfail, cs, n1, n2, p1, p2q Ñ findanswerpcs, n1, n2, pred1pcs, p1, p2q, pred2pcs, p1, p2qq

Following Jones [14], we use the notion of a counting module which provides an AFS with
a representation of a counting function and a means of computing. Counting modules can
be composed, making it possible to count to greater numbers. Due to the laxity of term
rewriting, our constructions are technically quite different from those of [14].

§ Definition 15 (Counting Module). Write F “ C YD for the signature in Figure 2. For P a
function from N to N, a P -counting module of order k is a tuple Cπ ::“ p~σ,Σ, R,A, x¨yq s.t.:

~σ is a sequence of types σ1 ˆ ¨ ¨ ¨ ˆ σa where each σi has order at most k ´ 1;
Σ is a kth-order signature disjoint from F , with designated symbols zeroπ : rstringˆ~σs ñ
bool and, for 1 ď i ď a with σi “ τ1 ñ . . . ñ τm ñ ι symbols prediπ, suciπ, inviπ :
rstringˆ ~σ ˆ ~τ s ñ ι and seediπ : rstringˆ ~τ s ñ κ;
R is a set of cons-free rules fp~̀q Ñ r with f P Σ, each `i P T pC,Vq and r P T pC Y Σ,Vq;
for every string cs Ď I`, the set Acs Ď tps1, . . . , saq P T pCYΣqa |$ sj : σj for 1 ď j ď au;
for every string cs, x¨ycs is a surjective mapping from Acs to t0, . . . , P p|cs|q ´ 1u;
writing e.g. prediπr~ss : σi for the term λ~y.prediπp~s, ~yq, the following properties are satisfied:
pseed1

πrcss, . . . , seedaπrcssq P Acs and xpseed1
πrcss, . . . , seedaπrcssqycs “ P p|cs|q ´ 1

and for all ps1, . . . , saq P Acs with xps1, . . . , saqycs “ m:
ppred1

πrcs, ~ss, . . . , predaπrcs, ~ssq and psuc1
πrcs, ~ss, . . . , sucaπrcs, ~ssq and pinv1

πrcs, ~ss, . . . ,

invaπrcs, ~ssq are all in Acs
xppred1

πrcs, ~ss, . . . , predaπrcs, ~ssqycs “ maxpm´ 1, 0q
xpsuc1

πrcs, ~ss, . . . , sucaπrcs, ~ssqycs “ minpm` 1, P p|cs|q ´ 1q
xpinv1

πrcs, ~ss, . . . , invaπrcs, ~ssqycs “ P p|cs|q ´ 1´m
zeroπpcs, ~sq Ñ˚

R true iff m “ 0 and zeroπpcs, ~sq Ñ˚
R false iff m ą 0

if each si Ñ˚
R ti and pt1, . . . , taq P Acs, then also xpt1, . . . , taqycs “ m.

It is not hard to see how we would use a P -counting module in the AFS of Figure 2; this
results in a kth-order AFS for a kth-order module. Note that this works even if some number
representations ps1, . . . , saq are not in normal form: even if we reduce ~s to some tuple ~t, the
result of the zero test cannot change from true to false or vice versa. Since the algorithm
relies heavily on these tests, we may safely assume that terms representing numbers are
reduced in a lazy way—as we did in Section 3.2 for the arguments s and t of main.



C. Kop and J. G. Simonsen 49:11

§ Lemma 16. There is a first-order (λn.2n`1)-counting module.

Proof. Like in Section 3.2, we will represent a set of numbers—or rather, its encoding as a
bit-sequence—by a pair of terms. We let Ce :“ pstringˆ string,Σ, R,A, x¨yq, where:

Acs contains all pairs ps, tq such that (a) all data terms q such that s Ñ˚
R q or t Ñ˚

R q

are subterms of cs, and (b) for each q � cs either sÑ˚
R q or tÑ˚

R q, but not both.
Writing cs “ cN p. . . pc1p�qq . . . q, we let cs0 “ �, cs1 “ c1p�q and so on. We let
xps, tqycs “

řN
i“0t2N´i | sÑ˚

R csiu. That is, xps, tqycs is the number represented by the
bit-sequence b0 . . . bN where bi “ 1 iff s Ñ˚

R csi, iff not t Ñ˚
R csi (with bN the least

significant digit).
Σ consists of the defined symbols introduced in R, which we construct below.

As in Section 3.2, we use non-deterministic selection functions to construct ps, tq:

eitherpx, yq Ñ x eitherpx, yq Ñ y K Ñ K

The symbol K will be used for terms which do not reduce to any data (the K Ñ K rule is
used to force K P D). For the remaining functions, we consider bitvector arithmetic. First,
2N`1 ´ 1 corresponds to the bit-sequence where each bi “ 1:

seed1
epcsq Ñ allpcs,Kq allp�, qq Ñ eitherp�, qq

seed2
epcsq Ñ K allpapxsq, qq Ñ allpxs, eitherpapxsq, qqq Jfor a P IK

Here, I “ ta | a P Iu. The inverse function is obtained by flipping the sequence’s bits:

inv1
epcs, s, tq Ñ t inv1

epcs, s, tq Ñ s

In order to define zeroe, we must test the value of all bits in the sequence. This is done by
forcing an evaluation from s or t to some data term. This test is constructed in such a way
that both true and false results necessarily reflect the state of s and t; any undesirable
non-deterministic choices lead to the evaluation getting stuck.

eqLenp�,�q Ñ true eqLenp�, apysqq Ñ false
eqLenpapxsq, bpysqq Ñ eqLenpxs, ysq eqLenpapxsq,�q Ñ false

*

Jfor a, b P IK

bitsetpxs, s, tq Ñ testpeqLenpxs, sq, eqLenpxs, tqq testptrue, xq Ñ true
testpx, trueq Ñ false

Then zeroe simply tests whether the bit is unset for each sublist.

zeroepxs, s, tq Ñ zopxs, s, t, bitsetpxs, s, tqq zopxs, s, t, trueq Ñ false
zopapxsq, s, t, falseq Ñ zeroepxs, s, tq Jfor a P IK zop�, s, t, falseq Ñ true

For the predecessor function, note that the predecessor of a bit-sequence b0 . . . bi´1b10 . . . 0 is
b0 . . . bi´101 . . . 1. We first define a helper function copy to copy b0 . . . bi´1:

copypxs, s, t, falseq Ñ maybeaddpxs, bitsetpxs, s, tq, copyptlpxsq, s, t, emptypxsqqq
copypxs, s, t, trueq Ñ K maybeaddpxs, true, qq Ñ eitherpxs, qq

maybeaddpxs, false, qq Ñ q
emptyp�q Ñ true tlp�q Ñ �

emptypapxqq Ñ false Jfor a P IK tlpapxqq Ñ x Jfor a P IK

Then copypxsmaxpi´1,0q, s, t, ri “ 0sq reduces to those xsj with 0 ď j ă i where bj “ 1, and
copypxsmaxpi´1,0q, t, s, ri “ 0sq to those with bj “ 0. This works because s and t are each
other’s complement. To define pred, we first handle the zero case:

predi
epcs, s, tq Ñ pzipcs, s, t, zeroepcs, s, tqq Jfor i P t1, 2uK

FSCD 2016



49:12 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

pz1pcs, s, t, trueq Ñ s pz1pcs, s, t, falseq Ñ pmain1pcs, s, t, bitsetpcs, s, tqq
pz2pcs, s, t, trueq Ñ t pz2pcs, s, t, falseq Ñ pmain2pcs, s, t, bitsetpcs, s, tqq

Then, pmainpxsN , s, t, rbN “ 1sq flips the bits bN , bN´1, . . . until an index is encountered
where bi “ 1; this last bit is flipped, and the remaining bits copied. Formally:

pmain1pxs, s, t, trueq Ñ copyptlpxsq, s, t, emptypxsqq
pmain2pxs, s, t, trueq Ñ eitherpxs, copyptlpxsq, t, s, emptypxsqqq

pmain1pxs, s, t, falseq Ñ eitherpxs, pmain1ptlpxsq, s, t, bitsetptlpxsq, s, tqqq
pmain2pxs, s, t, falseq Ñ pmain2ptlpxsq, s, t, bitsetptlpxsq, s, tqq

Finally, we observe that x ` 1 “ N ´ ppN ´ xq ´ 1q and for x “ N also minpx ` 1, Nq “
N´pmaxppN´xq´1, 0qq. Thus, we may define sucpbq as invppredpinvpxqqq. Taking pairing
into account and writing out the definition, this simplifies to:

suc1pcs, s, tq Ñ pred2pcs, t, sq suc2pcs, s, tq Ñ pred1pcs, t, sq đ

Having Lemma 16 as a basis, we can define composite modules. Here, we give fewer
details than for Lemma 16 as the constructions use many of the same ideas.
§ Lemma 17. If there exist a P -counting module Cπ and a Q-counting module Cρ, both of
order at most k, then there is a pλn.P pnq ¨Qpnqq-counting module Cπ¨ρ of order at most k.
Proof Sketch. Let Cπ ::“ prσ1ˆ¨ ¨ ¨ˆσas,Σπ, Rπ, Aπ, x¨yπq and Cρ ::“ prτ1ˆ¨ ¨ ¨ˆτbs,Σρ, Rρ,
Aρ, x¨yρq. We will, essentially, represent the numbers i P t0, . . . , P p|cs|q ¨ Qp|cs|q ´ 1u by a
pair pi1, i2q with 0 ď i1 ă P p|cs|q and 0 ď i2 ă Qp|cs|q, such that i “ i1 ¨Qp|cs|q ` i2. This
is done by defining Aπ¨ρcs “ tpu1, . . . , ua, v1, . . . , vbq | pu1, . . . , uaq P A

π
cs ^ pv1, . . . , vbq P A

ρ
csu,

and xp~u,~vqyπ¨ρcs “ xp~uqyπcs ¨Qp|cs|q ` xp~vqy
ρ
cs. The signature of defined symbols and rules of

Cπ¨ρ are straightforwardly defined as well, extending those in Cπ and Cρ; for instance:

zeroπ¨ρpcs, u1, . . . , ua, v1, . . . , vbq Ñ andpzeroπpcs, u1, . . . , uaq, zeroρpcs, v1, . . . , vbqq

andptrue, xq Ñ x andpfalse, yq Ñ false đ

§ Lemma 18. If there is a P -counting module Cπ of order k, then there is a pλn.2P pnqq-
counting module Cprπs of order k ` 1.
Proof Sketch. We represent every bitstring bP p|cs|q´1¨¨¨b0 as a function of type σ1 ñ . . .ñ

σa ñ bool. The various functions are defined as bitvector operations. For example:
seedprπspcs, k1, . . . , kaq Ñ true invprπspcs, F, k1, . . . , kaq Ñ notpF ¨ k1 ¨ ¨ ¨ kaq

zeroprπspcs, F q Ñ zero1prπspcs, seed1
πrcss, . . . , seedaπrcss, F q

zero1prπspcs, k1, . . . , ka, F q Ñ ztestprπspF ¨ k1 ¨ ¨ ¨ ka, zeroπpcs, k1, . . . , kaq, cs,

k1, . . . , ka, F q

ztestprπsptrue, z, cs,~k, F q Ñ false
ztestprπspfalse, true, cs,~k, F q Ñ true

ztestprπspfalse, false, cs,~k, F q Ñ zero1prπspcs, pred1
πrcs,

~ks, . . . , predaπrcs,~ks, F q đ

Note that, for instance, seedprπsrcss is λk1 . . . ka.seedprπspcs, k1, . . . , kaq: the additional
parameters ki should be seen as indexing the result of the function.

We obtain:
§ Theorem 19. Any decision problem in EkTIME can be accepted by a kth-order AFS.
Proof. Following the construction in this section, it suffices if we can find a kth-order counting
module counting up to expk2pa ¨ nq where n is the size of the input and a a fixed positive
integer. Lemma 16 gives a first-order λn.2n`1-counting module, and by iteratively using
Lemma 17 we obtain λn.p2n`1qa “ λn.2apn`1q for any a. Iteratively applying Lemma 18 on
the result gives a kth-order λn.expk2pa ¨ pn` 1qq-counting module. đ



C. Kop and J. G. Simonsen 49:13

5 Finding normal forms

In the previous section we have seen that every function in EkTIME can be implemented by
a cons-free kth-order AFS. Towards a characterization result, we must therefore show the
converse: that every function implemented by a cons-free kth-order AFS is in EkTIME.

To achieve this goal, we will now give an algorithm that, on input any basic term in an
AFS of order k, will output its set of data normal forms in EkTIME in the size of the term.

A key idea is to associate terms of higher-order type to functions. We define:

JιK “ Ppts | s P B ^ $ s : ιuq for ι P S pso a set of subsets of Bq
Jσ ñ τK “ JτKJσK pso the set of functions from JσK to JτKq

Intuitively, an element of JιK represents a set of possible reducts of a term s : ι, while
an element of Jσ ñ τK represents the function defined by some λx.s : σ ñ τ . Since—
as induction on the structure of σ shows—each JσK is finite, we can define the following
algorithm to find all normal forms of a given basic term. In the algorithm, we build functions
Confirmed0,Confirmed1, . . . , each mapping statements fpA1, . . . , Anq « t to a value in tJ,Ku.
Intuitively, Confirmedirfp ~Aq « ts denotes whether, in step i in the algorithm, we have
confirmed that fps1, . . . , snq Ñ

˚
R t, where each Ai represents the corresponding si.

§ Algorithm 20.
Input: A basic term s “ gpt1, . . . , tmq.
Output: The set of data normal forms of s. Note that this set may be empty.
Set B :“ Bs. For all f : rσ1 ˆ ¨ ¨ ¨ ˆ σns ñ ι P D, all A1 P Jσ1K, . . . , An P JσnK, all t P JιK,

we let Confirmed0
rfpA1, . . . , Anq « ts :“ K. Now, for all such f, ~A, t and all i P N:

if Confirmedirfp ~Aq « ts “ J, then Confirmedi`1
rfp ~Aq « ts :“ J;

otherwise, for all rules fp`1, . . . , `nq Ñ r P R, for all substitutions γ on domain
FV pfp~̀qqzt~̀u (so on those variables occurring below constructors) such that `jγ P Aj for
all j with `j not a variable (Aj is a set of terms since `j , a non-variable proper constructor
term, must have base type), let η be the function such that for each `j P V, ηp`jq “ Aj ,
and test whether t P NF iprγ, ηq. If there are a rule and substitution where this test
succeeds, let Confirmedi`1

rfp ~Aq « ts :“ J, otherwise let Confirmedi`1
rfp ~Aq « ts :“ K.

Here, NF ips, ηq is defined recursively for B-safe terms s and functions η mapping all variables
x : σ in FV psq to an element of JσK, as follows:

if s is a data term, then NF ips, ηq :“ tsu;
if s is a variable, then NF ips, ηq :“ ηpsq;
if s “ fps1, . . . , snq with f P D, then NF ips, ηq is the set of all t P B such that
ConfirmedirfpNF ips1, ηq, . . . ,NF ipsn, ηqq « ts “ J;
if s “ u ¨ v, then NF ips, ηq “ NF ipu, ηqpNF ipv, ηqq;
if s “α λx.t : σ ñ τ where x R domainpηq, then NF ips, ηq :“ the function mapping
A P JσK to NF ipt, η Y rx :“ Asq.

When Confirmedi`1
rfp ~Aq « ts “ Confirmedirfp ~Aq « ts for all statements, the algorithm ends;

we let I :“ i` 1 and return tt P B | ConfirmedI rgptt1u, . . . , ttmuq « ts “ Ju.

As D, B and all JσiK are all finite, and the number of positions at which Confirmedi is J
increases in every step, the algorithm always terminates. The intention is that ConfirmedI

reflects rewriting for basic terms. This result is stated formally in Theorem 22.

FSCD 2016



49:14 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

§ Example 21. Consider the palindrome AFS in Example 11, with starting term s “ 1p0p�qq.
Then Bs “ t1p0p�qq, 0p�q,�, true, falseu. Then we have JboolK “ tH, ttrueu, tfalseu,
ttrue, falseuu and JstringK is the set containing all eight subsets of t1p0p�qq, 0p�q,�u.
Thus, there are 8 ¨ 8 ¨ 2 statements of the form palindromepA,Bq « t, 4 ¨ 4 ¨ 2 of the form
andpA,Bq « t and so on, totalling 432 statements to be considered in every step.

We consider one step, determining Confirmed1
rchk1pt1p0p�qqu, t0p�q,�uq « trues. There

are two viable combinations of a rule and a substitution: chk1p1pxsq, 0pysqq Ñ chk1pxs, ysq

with substitution γ “ rxs :“ 0p�q, ys :“ �s and chk1p1pxsq,�q Ñ true with γ “ rxs :“
0p�qs. Consider the first. As there are no functional variables, η is empty and we need to
determine whether true P NF1pchk1p0p�q,�q,Hq. This fails, because Confirmed0

rξs “ K

for all statements ξ. However, the check for the second rule, true P NF1ptrue,Hq, succeeds.
Thus, we mark Confirmed1

rchk1pt1p0p�qqu, t0p�q,�uq « trues “ J.

§ Theorem 22. Let f : rι1 ˆ ¨ ¨ ¨ ˆ ιns ñ κ P D and s1 : ι1, . . . , sn : ιn, t : κ be data terms.
Then ConfirmedI rfpts1u, . . . , tsnuq « ts “ J if and only if fp~sq Ñ˚

R t.

Proof Sketch. Define a labeled variation of R:

Rlab “ tfi`1p~̀q Ñ labeliprq | fp~̀q Ñ r P R^ i P Nu Y tfi`1p~xq Ñ fip~xq | f P D ^ i P Nu

Here labeli replaces each defined symbol f by a symbol fi. Then Rlab is infinite, and
fp~sq Ñ˚

R t iff some fip~sq Ñ˚
Rlab

t. Furthermore, ÑRlab is terminating (even if ÑR is not!) as
is provable using, e.g., the Computability Path Ordering [9]. Thus, ÑRlab is a well-founded
binary relation on the set of labeled terms, and we can hence perform induction.

Consider the arguments passed to Confirmedi in the recursive process: NF i is defined
using tests of the form ConfirmedirfpNF ips1, ηq, . . . ,NF ipsn, ηqqs “ J, where each ηpxq itself
has the form NFjpt, η1q. To formally describe this, let an NF-substitution be recursively
defined as a mapping from some (possibly empty) set V Ď V such that for each x : σ P V there
are an NF-substitution δ and a term s with $ s : σ such that ηpxq “ NFjps, δq for some j.
For an NF -substitution η on domain V , we define ηpxq “ x for x R V , and ηpxq “ labeljpsqζ
for x P V with ηpxq “ NFjps, ζq. Then the following two claims can be derived by mutual
induction on q ordered with ÑRlab Y� (all ηj and ζ are NF-substitutions):

ConfirmedirfpNFj1ps1, η1q, . . . ,NFjnpsn, ηnqq « ts “ J if and only if
q :“ fiplabelj1ps1qη1, . . . , labeljnpsnqηnq Ñ˚

Rlab
t;

t P NF ipu, ζqpNFj1ps1, η1q, . . . ,NFjnpsn, ηnqq if and only if
q :“ plabelipuqζq ¨ labelj1ps1qη1 ¨ ¨ ¨ labeljnpsnqηn Ñ˚

Rlab
t.

Since, if we refrain from stopping the process in step I, we have ConfirmedI “ ConfirmedI`1
“

ConfirmedI`2
“ . . . , the theorem follows because fp~sq Ñ˚

R t iff some fip~sq Ñ˚
Rlab

t. đ

It remains to prove that Algorithm 20 runs sufficiently fast.

§ Theorem 23. If pF ,Rq has order k, then Algorithm 20 runs in time Opexpk2pm ¨ nqq for
some m.

Proof. Write N :“ |B|. As R and F are fixed, N is linear in the size of the only input,
s. We claim that if k, i P N are such that σ has at most order k, and the longest sequence
σ1 ñ . . .ñ σn ñ ι occurring in σ has length n` 1 ď i, then cardpJσKq ď expk`1

2 pik ¨Nq.
(Proof of claim.) Observe first that PpBq has cardinality 2N . Proceed by induction on

the form of σ. Note that we can write σ in the form σ1 ñ . . .ñ σn ñ ι with n ă i and each



C. Kop and J. G. Simonsen 49:15

σj having order at most k ´ 1 (as n “ 0 when given a 0th-order type). We have:

cardpJσ1 ñ . . .ñ σn ñ ιKq “ cardpp¨ ¨ ¨ pJιKJσnK
q
Jσn´1K

¨ ¨ ¨ q
Jσ1K

q “ cardpJιKqcardpJσnKq¨¨¨cardpJσ1Kq

ď 2N ¨cardpJσnKq¨¨¨cardpJσ1Kq
ď 2N ¨expk2 pi

k¨Nq¨¨¨expk2 pi
k¨Nq

pby IHq

“ 2N ¨expk2 pi
k¨Nqn

ď 2expk2 pi
k¨N ¨n`Nq

pby induction on kq

“ expk`1
2 pn ¨ ik ¨N `Nq ď expk`1

2 pi ¨ ik ¨Nq “ expk`1
2 pik`1

¨Nq

pbecause n ¨ ik ` 1 ď pn` 1q ¨ ik ď i ¨ ikq

(End of proof of claim.)
Since, in a kth-order AFS, all types occurring in type declarations have order at most

k ´ 1, there is some i (depending solely on F) such that all sets JσK in the algorithm have
cardinality ď expk2pik´1 ¨ Nq. Writing a for the maximal arity in F , there are at most
|D| ¨ expk2pik´1 ¨Nqa ¨N ď |D| ¨ expk2ppik´1 ¨ a` 1q ¨Nq distinct statements fp ~Aq « t.

Writing m :“ ik´1 ¨ a ` 1 and X :“ |D| ¨ expk2pm ¨Nq, we thus find: the algorithm has
at most I ď X ` 2 steps, and in each step we consider at most X statements ϕ where
Confirmedirϕs “ K. For every applicable rule, there are at most p2N qa different substitutions
γ, so we have to test a statement t P NF iprγ, ηq at most X ¨ pX ` 2q ¨ |R| ¨ 2aN times. The
exact cost of calculating NF iprγ, ηq is implementation-specific, but is certainly bounded by
some polynomial P pXq (which depends on the form of r). This leaves the total time cost of
the algorithm at OpX ¨ pX ` 1q ¨ 2aN ¨ P pXqq “ OpP 1pexpk2pm ¨Nqqq for some polynomial P 1
and constant m. As EkTIME is robust under taking polynomials, the result follows. đ

§ Theorem 24. Let k ě 1. A set S Ď t0, 1u` is in EkTIME iff there is an AFS of order k
that accepts S.

Proof. If S P EkTIME, Theorem 19 shows that it is accepted by an AFS of order k. Converse-
ly, if there is an AFS of order k that accepts S, Theorem 23 shows that we can find whether
any basic term reduces to true in time Opexpk2pm ¨nqq for some m, and thus S P EkTIME. đ

§ Remark. Observe that Theorem 24 concerns extensional rather than intensional behavior
of cons-free AFSs: a cons-free AFS may take arbitrarily many steps to reduce its input to
normal form, even if it accepts a set that a Turing machine may decide in a bounded number
of steps. However, Algorithm 20 can often find the possible results of an AFS faster than
evaluating the AFS would take, by avoiding duplicate calculations.

6 Changing the restrictions

In the presence of non-determinism, minor syntactical changes can make a large difference in
expressivity. We briefly consider two natural changes here.

6.1 Non-left-linearity
Recall that we imposed three restrictions: the rules in R must be constructor rules, left-
linear and cons-free. Dramatically, dropping the restriction on left-linearity allows us to
decide every Turing-decidable set using first-order systems. This is demonstrated by the
first-order AFS in Figure 3 which simulates an arbitrary Turing Machine on input alphabet
I “ t0, 1u. Here, a tape x0 . . . xn␣␣ . . . with the tape head at position i is represented by a
triple pxi´1:: ¨ ¨ ¨ ::x0, xi, xi`1:: ¨ ¨ ¨ ::xnq, where the “list constructor” :: is a defined symbol,
ensured by a rule which never fires. To split such a list into a head and tail, the AFS
non-deterministically generates a new head and tail, makes sure they are fully evaluated, and
uses a non-left-linear rule to test whether their combination corresponds to the original list.

FSCD 2016



49:16 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

K::t Ñ t rnd Ñ I translatep0pxsqq Ñ O :: translatepxsq
rnd Ñ O rnd Ñ B translatep1pxsqq Ñ I :: translatepxsq

translatep�q Ñ B :: translatep�q
rndtapepxq Ñ � translatep�q Ñ �

rndtapepxq Ñ rnd :: rndtapepxq equalpxl, xlq Ñ true

startpcsq Ñ runpstartstate,�, B, translatepcsqq

runps, xl, r, ylq Ñ shiftpt, xl, w, yl, dq Jfor every transition s
r{w d
““ùñ tK

shiftps, xl, c, yl, dq Ñ shift1ps, xl, c, yl, d, rnd, rndtapepOq, rndtapepIqq
shift1ps, xl, c, yl, d, b, t, tq Ñ shift2ps, xl, c, yl, d, b, tq Jfor every b P tO, I, BuK

shift2ps, xl, c, yl, R, z, tq Ñ shift3ps, c :: xl, z, t, equalpyl, z :: tqq
shift2ps, xl, c, yl, L, z, tq Ñ shift3ps, t, z, c :: yl, equalpxl, z :: tqq
shift3ps, xl, c, yl, trueq Ñ runps, xl, c, ylq

Figure 3 A first-order non-left-linear AFS that simulates a Turing machine

6.2 Product Types
Unlike AFSs, Jones’ minimal language in [14] employs a pairing constructor, essentially
admitting terms ps, tq : ιˆ κ if $ s : ι and $ t : κ are data terms or themselves pairs. This is
not in conflict with the cons-freeness requirement due to type restrictions: it does not allow
construction of an arbitrarily large structure of fixed type. In our (non-deterministic) setting,
however, pairing is significantly more powerful. Following the ideas of Section 4, one can
count up to arbitrarily large numbers: for an input string xnp. . . px1p�qqq of length n,

the counting module C0 represents i P t0, . . . , nu by a substring xip. . . px1p�qqq : string;
given a pλn.expk2pn ` 1qq-counting module Ck, we let Ck`1 represent a number b with
bit representation b0 . . . bN (for N ă expk2pn ` 1q) as the pair ps, tq—a term!—where s
reduces to representations of those bits set to 1, and t to representations of bits set to 0.

Then for instance a number in t0, . . . , 22n`1
´ 1u is represented by a pair ps, tq : pstringˆ

stringq ˆ pstringˆ stringq, where s and t themselves are not pairs; rather, they are both
terms reducing to a variety of different pairs. A membership test would take the form

elem2pk, ps, tqq Ñ elemtestpequal1pk, sq, equal1pk, tqq

elemtestptrue, xq Ñ true elemtestpx, trueq Ñ false

with the rule for equal1 having the form equal1pps1, t1q, ps2, t2qq Ñ r. That is, the rule
forces a partial evaluation. This is possible because a “false constructor” (i.e., a syntactic
structure that rules can match) is allowed to occur above non-data terms.

7 Future work

In this paper, we have considered the expressive power of cons-free term rewriting, and seen
that restricting data order results in characterizations of different classes. A natural direction
for future work is to consider further restrictions, either on rule formation, reduction strategy,
or both. Following Jones [14], we suspect that restricting to innermost evaluation will give
the hierarchy P Ď EXPTIME Ď EXP2TIME Ĺ ¨ ¨ ¨ . Furthermore, we conjecture that a
combination of higher-order rewriting and restrictions on rule formation, possibly together
with additions such as product types, may yield characterizations of a wide range of classes,
including non-deterministic classes like NP or very small classes like LOGTIME.



C. Kop and J. G. Simonsen 49:17

References
1 M. Avanzini, N. Eguchi, and G. Moser. A new order-theoretic characterisation of the

polytime computable functions. In APLAS, volume 7705 of LNCS, pages 280–295, 2012.
2 M. Avanzini and G. Moser. Closing the gap between runtime complexity and polytime

computability. In RTA, volume 6 of LIPIcs, pages 33–48, 2010.
3 M. Avanzini and G. Moser. Polynomial path orders. LMCS, 9(4), 2013.
4 P. Baillot. From proof-nets to linear logic type systems for polynomial time computing. In

TLCA, volume 4583 of LNCS, pages 2–7, 2007.
5 P. Baillot, M. Gaboardi, and V. Mogbil. A polytime functional language from light linear

logic. In ESOP, volume 6012 of LNCS, pages 104–124, 2010.
6 P. Baillot and U. Dal Lago. Higher-Order Interpretations and Program Complexity. In

CSL, volume 16 of LIPIcs, pages 62–76, 2012.
7 S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the polytime

functions. Computational Complexity, 2:97–110, 1992.
8 S. Bellantoni, K. Niggl, and H. Schwichtenberg. Higher type recursion, ramification and

polynomial time. Annals of Pure and Applied Logic, 104(1–3):17–30, 2000.
9 F. Blanqui, J. Jouannaud, and A. Rubio. The computability path ordering: The end of a

quest. In CSL, volume 5213 of LNCS, pages 1–14, 2008.
10 G. Bonfante. Some programming languages for logspace and ptime. In AMAST, volume

4019 of LNCS, pages 66–80, 2006.
11 D. de Carvalho and J. Simonsen. An implicit characterization of the polynomial-time

decidable sets by cons-free rewriting. In RTA-TLCA, volume 8560 of LNCS, pages 179–
193, 2014.

12 M. Hofmann. Type systems for polynomial-time computation, 1999. Habilitationsschrift.
13 N. Jones. Computability and Complexity from a Programming Perspective. MIT Press,

1997.
14 N. Jones. The expressive power of higher-order types or, life without CONS. JFP, 11(1):55–

94, 2001.
15 J. Jouannaud and A. Rubio. The higher-order recursive path ordering. In LICS, pages

402–411, 1999.
16 C. Kop and J. Simonsen. Complexity hierarchies and higher-order cons-free rewriting

(extended version). Technical report, University of Copenhagen, 2016. Available online at
the authors’ homepages.

17 L. Kristiansen and K. Niggl. On the computational complexity of imperative programming
languages. TCS, 318(1–2):139–161, 2004.

18 R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. TCS, 192(1):3–
29, 1998.

19 C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
20 M. Sipser. Introduction to the Theory of Computation. Thomson Course Technology, 2006.
21 F. van Raamsdonk. Higher-order rewriting. In Term Rewriting Systems, Chapter 11.

Cambridge University Press, 2003.

FSCD 2016



49:18 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

A Proofs omitted from the main text

In Section 2 we claim that for constructor rewriting systems R the following holds:

If t βÐ sÑ˚
R q with q a normal form, then tÑ˚

R q as well.

This is used as justification to not consider rules with a β-redex pλx.sq ¨ t in the right-hand
side. We will obtain this result as an easy consequence of the labeled system employed for
the proofs in Section 5. Thus, in this appendix we will allow such rules until the claim is
proven in Lemma A6.

A.1 Proofs of Section 3
To facilitate proving the properties on B-safety, we first extend the definition to be paramet-
rized over a set of proper constructor terms satisfying certain rules. In the following, we
assume that B is a set of data terms which is closed under � and contains all data terms
occurring in the right-hand side of a rule in R.

§ Definition A1 (BX -safety). Let X be a set of proper constructor terms on disjoint variables,
which does not contain any variable occurring bound in s; then:

(A) any subterm s� t P X is BX -safe;
(B) any term in B is BX -safe;
(C) any variable is BX -safe;
(D) if f P D and s1, . . . , sn are BX -safe, then fps1, . . . , snq is BX -safe (if well-typed);
(E) if s and t are both BX -safe, then s ¨ t is BX -safe (if well-typed);
(F) if x P V and s is BX -safe, then λx.s is BX -safe.

It is easy to see that a term is B-safe iff it is BH-safe. Note also that if we α-rename all
rules to make sure the same variables do not occur both bound and free, then the right-hand
side r of a cons-free rule fp~̀q Ñ r is Bt~̀u-safe.

We have the following properties:

§ Lemma A2. For all BX-safe terms s:

1. all subterms t of s are BX-safe;
2. if γ is a substitution such that tγ is B-safe for all t P X Y FV psq, then sγ is B-safe.

Proof. All three properties follow by a simple induction on the form of s. Note that for the
second property, all variables in s are renamed to fresh ones beforehand, which therefore do
not occur anywhere in X or in the domain or range of γ.

property (1): For case (B) we note that B is closed under subterms; the other cases are
obvious.
property (2): Case (A) holds by property (1): s� t P X implies sγ � tγ, which is B-safe
by assumption. Case (B) holds because all elements of B are closed, so sγ “ s P B. Case
(C) follows by assumption, and cases (D)–(E) by the induction hypothesis. đ

We recall Lemma 10, the primary property of interest for B-safety:

§ Lemma 10. If s is B-safe and sÑR t, then t is B-safe.

Proof. By induction on the form of s. First suppose the reduction does not take place at
the root. Since s reduces, it cannot be a variable or data term, so it has one of three forms:



C. Kop and J. G. Simonsen 49:19

s “ fps1, . . . , snq with f P D and all si are B-safe. Then the reduction takes place in
some si, so t “ fps1, . . . , s

1
i, . . . , snq with si ÑR s1i, so also s1i is B-safe by induction. This,

and B-safety of all other sj , gives B-safety of t.
s “ u ¨ v. Then either t “ u1 ¨ v with u ÑR u1 (and therefore u1 is B-safe) or t “ u ¨ v1

with v ÑR v1 (and therefore v1 is B-safe). Either way, t is the application of two B-safe
terms and therefore B-safe.
s “ λx.u. In this case, the reduction must take place in the B-safe term u, so t “ λx.u1

and u1 is B-safe as well by induction; B-safety of t follows.

This leaves the base case, a reduction at the root. Here, there are two possibilities:

s “ pλx.uq ¨ v and t “ urx :“ vs. By B-safety of s, also u and v are B-safe, so by
Lemma A2(2) the result t is B-safe as well.
s “ `γ and t “ rγ for some rule ` Ñ r P R and substitution γ which maps ` to a
B-safe term. Writing ` “ fp~̀q, we can assume that r is α-renamed to be Bt~̀u-safe, so by
Lemma A2(2) we obtain B-safety of t. đ

A.2 Proofs of Section 4
We move on to the results of Section 4.

§ Lemma 17. If there exist a P -counting module Cπ and a Q-counting module Cρ, both of
order at most k, then there is a λn.P pnq ¨Qpnq-counting module Cπ¨ρ of order at most k.

Proof. Let Cπ ::“ prσ1ˆ¨ ¨ ¨ˆσas,Σπ, Rπ, Aπ, x¨yπq and Cρ ::“ prτ1ˆ¨ ¨ ¨ˆτbs,Σρ, Rρ, Aρ, x¨yρq.
We can safely assume that any symbol f which occurs in both Σπ and Σρ has the same
type declaration in both, and is defined by the same rules in Rπ and Rρ—if this is not the
case, we simply use a renaming. Thus, we are given two counting modules that have no
conflicts: combining the signatures and rules does not affect the reduction and interpretation
properties.

Let Cπ¨ρ “ prσ1ˆ ¨ ¨ ¨ ˆ σaˆ τ1ˆ ¨ ¨ ¨ ˆ τbs,Σπ YΣρYΣ, Rπ YRρYR,Aπ¨ρ, x¨yπ¨ρq, where:

Aπ¨ρ “ tpu1, . . . , ua, v1, . . . , vbq | pu1, . . . , uaq P A
π ^ pv1, . . . , vbq P A

ρu,
xpu1, . . . , ua, v1, . . . , vbqy

π¨ρ
cs “ xpu1, . . . , uaqy

π
cs ¨Qp|cs|q ` xpv1, . . . , vbqy

ρ
cs,

Σ consists of the defined symbols introduced in R, which we construct below.

Intuitively, fixing cs and writing N :“ P p|cs|q andM :“ Qp|cs|q, a number i in t0, . . . , N ¨
M ´ 1u can be seen as a unique pair pn,mq with 0 ď n ă N and 0 ď m ă M , such that
i “ n ¨m. Here, n is represented by a tuple pu1, . . . , uaq in the counting module Cπ, and m
by a tuple pv1, . . . , vbq in Cρ.

For the seed function, we observe that N ¨M´1 “ pN´1q¨M`pM´1q, which corresponds
to the pair pN ´ 1,M ´ 1q, which in turn translates to the tuple pseed1

πrcss, . . . , seedaπrcss,
seed1

ρrcss, . . . , seedbρrcssq. This tuple is generated by the following rules:

seediπ¨ρpcs, ~zq Ñ seediπpcs, ~zq for 1 ď i ď a

seediπ¨ρpcs, ~zq Ñ seedi´aπ¨ρ pcs, ~zq for a` 1 ď i ď a` b

Note the extra parameters ~z: this we do because some σi may be a functional type, and all
functions have a sort as output type (as observed in the definition of counting modules).

The zero function requires both components to be 0:

zeroπ¨ρpcs, u1, . . . , ua, v1, . . . , vbq Ñ andpzeroπpcs, u1, . . . , uaq, zeroρpcs, v1, . . . , vbqq

FSCD 2016



49:20 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

andptrue, xq Ñ x andpfalse, yq Ñ false

For inverses, note thatN ¨M´pn¨M`mq´1 “ pN´mq¨M´m´1 “ pN´m´1q¨M`N´m´1,
giving the pair pN ´ n´ 1,M ´m´ 1q, or pinvpnq, invpmqq:

inviπ¨ρpcs, u1, . . . , ua, v1, . . . , vb, ~zq Ñ inviπpcs, u1, . . . , ua, ~zq for 1 ď i ď a

inviπ¨ρpcs, u1, . . . , ua, v1, . . . , vb, ~zq Ñ invi´aρ pcs, v1, . . . , vb, ~zq for a` 1 ď i ď a` b

For the predecessor, pi, jq ´ 1 results in pi, j ´ 1q if j ą 0, otherwise in pi´ 1,M ´ 1qq:

prediπ¨ρpcs, u1, . . . , ua, v1, . . . , vb, ~zq Ñ ptestiπ¨ρpzeroρpcs, v1, . . . , vbq, cs, u1, . . . , ua,

v1, . . . , vb, ~zq for 1 ď i ď a` b

ptestiπ¨ρpfalse, cs, ~u,~v, ~zq Ñ ui ¨ ~z for 1 ď i ď a

ptestiπ¨ρpfalse, cs, ~u,~v, ~zq Ñ predi´aρ pcs, v1, . . . , vb, ~zq for a` 1 ď i ď a` b

ptestiπ¨ρptrue, cs, ~u,~v, ~zq Ñ prediπpcs, u1, . . . , ua, ~zq for 1 ď i ď a

ptestiπ¨ρptrue, cs, ~u,~v, ~zq Ñ seeda´iρ pcs, v1, . . . , vb, ~zq for a` 1 ď i ď a` b

Note the use of vi ¨ ~z: this rule can be read as ptestiπ¨ρrfalse, cs, ~u,~vs ÑR ui if 1 ď i ď a

(modulo α-equivalence).
For the successor, pi, jq ` 1 results in pi, j ` 1q if j ăM ´ 1, and in pi` 1, 0q otherwise.

The former holds exactly if invpjq is non-zero, and 0 is exactly invpseedpcsqq.

suciπ¨ρpcs, u1, . . . , ua, v1, . . . , vb, ~zq Ñ suctestiπ¨ρpzeroρpcs, inv1
ρrcs,~vs, . . . , invbρrcs,~vsq,

u1, . . . , ua, v1, . . . , vb, ~zq for 1 ď i ď a` b

suctestiπ¨ρpfalse, cs, ~u,~v, ~zq Ñ ui ¨ ~z for 1 ď i ď a

suctestiπ¨ρpfalse, cs, ~u,~v, ~zq Ñ suci´aρ pcs, v1, . . . , vb, ~zq for a` 1 ď i ď a` b

suctestiπ¨ρptrue, cs, ~u,~v, ~zq Ñ suciπpcs, u1, . . . , ua, ~zq for 1 ď i ď a

suctestiπ¨ρptrue, cs, ~u,~v, ~zq Ñ nula´iρ pcs, ~zq for a` 1 ď i ď a` b

nuliρpcs, ~zq Ñ inviρpcs, seed1
ρrls, . . . , seedbρrls, ~zq for 1 ď i ď b

đ

§ Lemma 18. If there is a P -counting module Cπ of order k, then there is a λn.2P pnq-counting
module Cprπs of order k ` 1.

Proof. Assume given a P -counting module Cπ “ prσ1 ˆ ¨ ¨ ¨ ˆ σas,Σ, R,A, x¨yπq. We define
the 2P -counting module Cprπs as the tuple prσ1 ñ . . .ñ σa ñ bools,Σprπs, Rprπs, B, x¨yprπsq,
where:

Bcs is the set of all terms q P T pΣprπs Y C,Hq of type σ1 ñ . . .ñ σa ñ bool such that:

for all ps1, . . . , saq P Acs: q ¨ s1 ¨ ¨ ¨ sa reduces to either true or false, but not to both;
for all ps1, . . . , saq, pt1, . . . , taq P Acs: if xp~sqyπcs “ xp~tqyπcs, then q ¨s1 ¨ ¨ ¨ sa and q ¨t1 ¨ ¨ ¨ ta
reduce to the same boolean value.

Writing N :“ P p|cs|q ´ 1, let xqyprπscs “
řN
i“0t2N´i | q ¨ s1 ¨ ¨ ¨ sa Ñ

˚
R true for some

ps1, . . . , saq with xps1, . . . , saqy
π
cs “ iu; that is, q represents the number given by the

bitvector b0 . . . bN (with bN the least significant digit) where bi “ 1 if and only if
q ¨ ris Ñ˚

Rprπs true for some representation ris of i in the counting module Cπ (note that,
by the requirement on Bcs, this therefore holds for any representation of i).
Σprπs “ ΣY Σ1 and Rprπs “ RYR1, where Σ1 consists of the defined symbols introduced
in R1, which we construct below.



C. Kop and J. G. Simonsen 49:21

To start, seedrcss should return a bitvector that is 1 at all bits, so having seedrcss Ñ˚
R1

λ~k.true would suffice. By definition of the f r~ss construction, that is:

seedprπspcs, k1, . . . , kaq Ñ true

The inverse of a bitvector is obtained by flipping all the bits, as we saw n Lemma 16. Thus:

invprπspcs, F, k1, . . . , kaq Ñ notpF ¨ k1 ¨ ¨ ¨ kaq notptrueq Ñ false
notpfalseq Ñ true

For the zero function, we simply test whether all bits are set to 0:

zeroprπspcs, F q Ñ zero1prπspcs, seed1
πrcss, . . . , seedaπrcss, F q

zero1prπspcs, k1, . . . , ka, F q Ñ ztestprπspF ¨ k1 ¨ ¨ ¨ ka, zeroπpcs, k1, . . . , kaq, cs

k1, . . . , ka, F q

ztestprπsptrue, z, cs,~k, F q Ñ false
ztestprπspfalse, true, cs,~k, F q Ñ true

ztestprπspfalse, false, cs,~k, F q Ñ zero1prπspcs, pred1
πrcs,

~ks, . . . , predaπrcs,~ks, F q

For the predecessor function, we observe as before that x0 . . . xi10 . . . 0 has x1 . . . xi01 . . . 1
as a predecessor; that is, we must flip all the bits until we encounter a 1, flip that one too,
and leave the function unmodified for the rest. To this end, we first define what it means to
flip a bit: we want fliprF,~ks to be the function that maps ~z to F ¨ ~z if x~kyπ ‰ x~zyπ and to
notpF ¨ ~zq otherwise. For this, of course, we will need to define an equality check as well.

flipprπspcs, F, k1, . . . , ka, z1, . . . , zaq Ñ flipcheckprπspF, ~z, equalπpcs,~k, ~zqq
flipcheckprπspF, z1, . . . , za, falseq Ñ F ¨ z1 ¨ ¨ ¨ za
flipcheckprπspF, z1, . . . , za, trueq Ñ notpF ¨ z1 ¨ ¨ ¨ zaq

equalπpcs, k1, . . . , ka, z1, . . . , zaq Ñ eqtestπpzeroπpcs,~kq, zeroπpcs, ~zq, cs,~k, ~zq
eqtestπptrue, b, cs,~k, ~zq Ñ b

eqtestπpfalse, true, cs,~k, ~zq Ñ false
eqtestπpfalse, false, cs,~k, ~zq Ñ equalπpcs, pred1

πrcs,
~ks, . . . , predaπrcs,~ks,

pred1
πrcs, ~zs, . . . , predaπrcs, ~zsq

This, we use to define our predecessor function.

predprπspcs, F, ~zq Ñ pred1prπspcs, seed1
πrcss, . . . , seedaπrcss, F, ~zq

pred1prπspcs, k1, . . . , ka, F, ~zq Ñ predtestprπspF ¨ k1 ¨ ¨ ¨ ka, zeroπpcs,~kq, cs,~k,
flipprπsrcs, F,

~ks, ~zq

predtestprπsptrue, b, cs,~k, F, ~zq Ñ F ¨ ~z

predtestprπspfalse, true, cs,~k, F, ~zq Ñ notpF ¨ ~zq
predtestprπspfalse, false, cs,~k, F, ~zq Ñ pred1prπspcs, pred1

πrcs,
~ks, . . . , predaπrcs,~ks, F, ~zq

Note the way not is used in the second-last rule: this is the case where we continue flipping
bits until b0 is reached, and b0 itself is 0; that is, the number represented by F is 0. As the
pred-function iteratively updates the functional argument, this argument will return true
at all positions by the time this last bit is reached. That is why not is applied.

Finally, the successor function is obtained by combining inv and pred as in Lemma 16.

sucprπspcs, F, ~zq Ñ invprπspcs, predprπsrcs, invprπsrcs, F ss, ~zq đ

FSCD 2016



49:22 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

A.3 Proofs of Section 5
In Section 5, we must prove correctness of the algorithm (Theorem 22). This proof takes
several large steps. To start, we introduce a terminating counterpart to R.

§ Definition A3 (Labeled System). Let Flab :“ F Y tfi : α | f : α P D ^ i P Nu. For
s P T pF ,Vq and i P N, let labelipsq be s with all instances of a defined symbol f replaced by
fi. For t P T pFlab,Vq, let |t| be t with all symbols fi replaced by f . Then, let

Rlab “ tfpx1, . . . , xnq Ñ fipx1, . . . , xnq | f : rσ1 ˆ ¨ ¨ ¨ ˆ σns ñ ι P D ^ i P Nu Y
tfi`1px1, . . . , xnq Ñ fipx1, . . . , xnq | f : rσ1 ˆ ¨ ¨ ¨ ˆ σns ñ ι P D ^ i P Nu Y
tfi`1p`1, . . . , `nq Ñ labeliprq | fp~̀q Ñ r P R^ i P Nu

Note that constructor terms are unaffected by labeli and | ¨ |. While the AFS pFlab,Rlabq

is obviously non-deterministic and infinite in both its signature and rules, these issues do not
block us from using it as a reasoning tool. Importantly, this AFS defines the same decision
function as pF ,Rq:

§ Lemma A4. For all f : rσ1 ˆ ¨ ¨ ¨ ˆ σns ñ ι P D and data terms s1, . . . , sn, t:

fps1, . . . , snq Ñ
˚
R t if and only if fps1, . . . , snq Ñ

˚
Rlab

t

Proof. For the if direction, note that:

if γ|¨|pxq “ |γpxq| for all x, then |uγ| “ |u|γ|¨| for all u P T pFlab,Vq;
therefore, if u “ `γ and v “ rγ for ` Ñ r P Rlab, then either |u| “ |`|γ|¨| “ |r|γ|¨| “ |v|
(for the first two groups of rules, where |`| “ |r|), or |u| “ |`|γ|¨| ÑR |r|γ

|¨| “ |v|;
therefore, if uÑRlab v either |u| ÑR |v| or |u| “ |v|.

The first and third observations follow by a straightforward induction on u, the second by
definition of Rlab and | ¨ |. The if statement now follows straightforwardly by induction on
the length of the derivation fp~sq Ñ˚

Rlab
t.

For the only if direction, proceed as follows. For any substitution γ and i P N, let γi be
the substitution mapping each x to labelipγpxqq. We observe:

for all s, γ, i: labelipsγq “ labelipsqγi (by structural induction on s);
for all s, i: labeli`1psq Ñ

˚
Rlab

labelipsq (by structural induction on s);
therefore, if u “ fp~̀qγ and v “ rγ with fp~̀q Ñ r P R, then labeli`1puq “

labeli`1p`qγi`1 Ñ
˚
Rlab

fi`1p~̀qγi ÑRlab labeliprqγi “ labelipvq;
therefore, if uÑR v, then labeli`1puq Ñ

˚
R labelipvq (by structural induction on u);

thus, if fp~sq Ñ˚
R t in k steps, then fp~sq ÑRlab fkp~sq Ñ

˚
Rlab

label0ptq “ t (as there are no
defined symbols in t). đ

What is more, as promised, ÑRlab is terminating (even though ÑR might not be).

§ Lemma A5. There is no infinite Ñ˚
Rlab

reduction.

Proof. This follows because we can orient all rules by the Computability Path Ordering
(CPO) [9]. Here, we use only the first definition, without accessibility (Section 3.3), with the
following precedence:

for f, g P D, i, j P N: fi ąFlab gj if i ą j;
for f P D, g P C, i P N: f ąFlab fi ąFlab g.



C. Kop and J. G. Simonsen 49:23

This precedence is obviously well-founded, as there is no infinite decreasing sequence of
numbers in N. We employ an order on types which obeys the requirements and equates all
sorts (such an order can easily be constructed for any given set of sorts).

Observe:

1. If s P T pC,Vq and s� t, then s ľτ t.
Here, ąτ is the type-sensitive part of the ordering, so s : σ ą t : σ and σ is greater or equal
in the type ordering then τ . As we have assumed that all sorts have a type declaration
rι1 ˆ ¨ ¨ ¨ ˆ ιns ñ κ with κ and all ιi in S, the above observation follows immediately by
case (1e) and structural induction on s.

Recall that CPO employs a (finite) set of variables X for bookkeeping related to variables
encountered in (above the right-hand side of) the current constraint to be satisfied. Keeping
with standard notation for CPO [9] we write s ąX t for the ordering below. Observe that
each rule in Rlab is oriented: the rules with an unlabeled left-hand side because f ąFlab fi
for all f, i, the “decreasing” rules fi`1p~xq Ñ fip~xq because each fi`1 ąFlab fi, and as for the
other rules, we see by induction that if r is a renaming of a subterm of the right-hand side
of a rule fp~̀q Ñ r P R and FV prqzFV pfp~̀qq Ď X and only variables not occurring in fp~̀q
have been renamed, then fi`1p~̀q ą

X labeliprq:

if r is a variable in X, then fi`1p~̀q ą
X r “ labeliprq by case (1a);

if r is a variable not in X, then it occurs in some `j , so `j ľτ r “ labeliprq by observation
(1), giving fi`1p~̀q ą

X labeliprq by case (1e).
if r “ gpr1, . . . , rnq with g P D, then labeliprq “ giplabelipr1q, . . . , labeliprnqq, and by the
induction hypothesis fi`1p~̀q ą

X labeliprjq for all j; we complete by case (1c) because
fi`1 ąFlab gi;
if r “ gpr1, . . . , rnq with g P C, then labeliprq “ gplabelipr1q, . . . , labeliprnqq, and by the
induction hypothesis fi`1p~̀q ą

X labeliprjq for all j; we complete once more by case (1c)
because fi`1 ąFlab g;
if r “ r1 ¨ r2, then fi`1p~̀q ąX labelipr1q, labelipr2q by the induction hypothesis, so
fi`1p~̀q ą

X labelipr1q ¨ labelipr2q “ labelipr1 ¨ r2q by case (1c).
if r “ λx.r1, then for a fresh variable y, FV pr1rx :“ ysq “ FV prq Y tyu; the induction
hypothesis gives fi`1p~̀q ąXYtyu labelipr1rx :“ ysq “ labelipr1qrx :“ ys, so we obtain
fi`1p~̀q ą

X labeliprq by case (1d).

In particular, we thus have fi`1p~̀q ąτ labeliprq for r the right-hand side of the rule. With
all rules oriented, we obtain well-foundedness of ÑRlab by [9, Lemma 6.3 (monotonicity),
Lemma 6.6(1) (stability) and Theorem 6.27 (well-foundedness)]. đ

Note that, while we did use Lemma 12 to obtain that functional variables may only occur
as direct arguments of the root, the proof otherwise does not rely on cons-freeness.

Before turning our attention to Theorem 22, we derive one ancillary lemma:

§ Lemma A6. Let s “ pλx.uq ¨ v0 ¨ v1 ¨ ¨ ¨ vn with n ě 0 and t P DA. Then s Ñ˚
Rlab

t iff
urx :“ v0s ¨ v1 ¨ ¨ ¨ vn Ñ

˚
Rlab

t.

Proof. For the only if direction, we obtain s ÑRlab urx :“ v0s ¨ v1 ¨ ¨ ¨ vn Ñ
˚
Rlab

t. For
the if direction, suppose s Ñ˚

R t. As t P DA does not contain applications, the reduction
must eventually contract a redex at the root; we have s Ñ˚

Rlab
pλx.u1q ¨ v10 ¨ v

1
1 ¨ ¨ ¨ v

1
n Ñβ

u1rx :“ v10s ¨ v
1
1 ¨ ¨ ¨ v

1
n Ñ

˚
Rlab

t, with u Ñ˚
Rlab

u1 and each vi Ñ
˚
Rlab

v1i. But as ÑRlab is
a rewriting relation, and therefore both monotonic and stable under substitution, also
urx :“ v0s ¨ v1 ¨ ¨ ¨ vn Ñ

˚
Rlab

u1rx :“ v10s ¨ v
1
1 ¨ ¨ ¨ v

1
n Ñ

˚
Rlab

t. đ

FSCD 2016



49:24 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

Note that Lemma A6 immediately implies that t βÐ sÑ˚
R q with q P DA implies tÑ˚

R q

as well. Therefore, as announced in the introduction, we will from now on assume that the
rules in R do not contain any β-redexes, as reducing these immediately does not change the
many-step reduction relation to data which we are interested in.

As announced in the proof sketch, we will use an auxiliary definition; the NF-substitution:

§ Definition A7. For V Ď V, a partial function η on domain V is an NF-substitution of
depth k ě 0 if k is the smallest number such that: for all x : σ P V there exist some i, s, ζ
such that $ s : σ and ηpxq “ NF ips, ζq and ζ is an NF-substitution of depth m ă k. Note
that the empty mapping rs is an NF-substitution of depth 0.

For an NF -substitution η on domain V , let η be defined by induction on the depth of η:

for x R V , ηpxq “ x;
for x P V we can write ηpxq “ NF ips, ζq with depthpζq ă depthpηq; let ηpxq “ labelipsqζ.

Now we are ready to prove Theorem 22:

§ Theorem 22. Let f : rι1 ˆ ¨ ¨ ¨ ˆ ιns ñ κ P D and s1 : ι1, . . . , sn : ιn, t : κ be data terms.
Then ConfirmedI rfpts1u, . . . , tsnuq « ts “ J iff fp~sq Ñ˚

R t.

Proof. Extending the definition of Confirmedi and NF i also for i ą I – simply by observing
that, if the recursive process were continued, we obtain ConfirmedI “ ConfirmedI`1

“ . . . –
we will derive the following two statements for all relevant i,~j P N, f P D, u, ~s P T pF ,Vq, t P B
and NF-substitutions ζ, ~η:

(A) ConfirmedirfpNFj1ps1, η1q, . . . ,NFjnpsn, ηnqq « ts “ J if and only if
q :“ fiplabelj1ps1qη1, . . . , labeljnpsnqηnq Ñ˚

Rlab
t;

(B) t P NF ipu, ζqpNFj1ps1, η1q, . . . ,NFjnpsn, ηnqq if and only if
q :“ plabelipuqζq ¨ labelj1ps1qη1 ¨ ¨ ¨ labeljnpsnqηn Ñ˚

Rlab
t.

If we can prove (A), we obtain the theorem by Lemma A4:

if ConfirmedI rfp~sq « ts “ J, we can write this as
ConfirmedI rfpNF0ps1, rsq, . . . ,NF0psn, rsqq « ts “ J, which gives
fplabel0ps1q, . . . , label0psnqq Ñ˚

Rlab
t, so fps1, . . . , snq Ñ

˚
R t by Lemma A4;

if fp~sq Ñ˚
R t, then by Lemma A4 there is some i with

fiplabelips1q, . . . , labelipsnqq Ñ˚
Rlab

t; then by (A) we obtain
ConfirmedirfpNF ips1, rsq, . . . ,NF ipsn, rsqq « ts “ J, which (because all si P DA) implies
Confirmedirfpts1u, . . . , tsnuq « ts “ J. If i ď I then the same holds for I since
ConfirmedxrCs “ J implies Confirmedx`1

rCs “ J, and if i ą I this follows because
ConfirmedI “ ConfirmedI`1

“ . . . .

We will prove statements (A) and (B) together by a mutual induction on q, oriented with
ÑRlab Y�, which is terminating because ÑRlab is terminating and monotonic.
(A), only if case. Suppose ConfirmedirfpA1, . . . , Anq « ts “ J, where Ak “ NFjkpsk, ηkq

for 1 ď k ď n. If this holds, then necessarily i ą 0; there are two possibilities.

Confirmedi´1
rfp ~Aq « ts “ J. The induction hypothesis immediately yields:

fiplabelj1ps1qη1, . . . , labeljnpsnqηnq
ÑRlab fi´1plabelj1ps1qη1, . . . , labeljnpsnqηnq
Ñ˚

Rlab
t



C. Kop and J. G. Simonsen 49:25

There are a rule fp~̀q Ñ r P R and substitution γ on domain FV pfp~̀qqzt~̀u such that
`kγ P Ak for all non-variable `k and t P NF i´1prγ, ξq, where ξ is the function mapping
each variable `k to Ak “ NFjkpsk, ηkq – also an NF-substitution.
Now, for all non-variable `k, we use the � part of the induction hypothesis (B) to obtain
labeljkpskqηk Ñ˚

Rlab
`kγ P B. Let δ :“ γ Y r`k :“ labeljkpskqηk | `k P Vs. Then we have:

fiplabelj1ps1qη1, . . . , labeljnpsnqηnq
Ñ˚

Rlab
fip`1, . . . , `nqδ

ÑRlab labeli´1prqδ

“ labeli´1prγqr`k :“ labeljkpskqηk | `k P Vs
“ labeli´1prγqξ

Since at least one step is done and t P NF i´1prγ, ξq, we can use the ÑRlab part of the
induction hypothesis of (B) to derive that labeli´1prγqξ Ñ

˚
Rlab

t.

(A), if case. Suppose q “ fiplabelj1ps1qη1, . . . , labeljnpsnqηnq Ñ˚
Rlab

t. Since t cannot be
rooted by fi, the reduction must eventually take a root step. There are two possibilities.

A lowering rule: q Ñ˚
Rlab

fipx1, . . . , xnqγ ÑRlab fi´1px1, . . . , xnqγ Ñ
˚
Rlab

t. Then

q “ fiplabelj1ps1qη1, . . . , labeljnpsnqηnq
ÑRlab fi´1plabelj1ps1qη1, . . . , labeljnpsnqηnq
Ñ˚

Rlab
fi´1p~xqγ Ñ

˚
Rlab

t

By the induction hypothesis, Confirmedi´1
rfpNFj1ps1, η1q, . . . ,NFjnpsn, ηnqq « ts “ J,

so by definition the same holds for Confirmedir. . . s.
A rule obtained from R: q Ñ˚

Rlab
fip`1γ, . . . , `nγq ÑRlab labeli´1prqγ Ñ

˚
Rlab

t for fp~̀q Ñ
r P R, where each labeljkpskqηk Ñ˚

R `kγ. Now, let LV :“ tk | k P t1, . . . , nu ^ `k P Vu.
Let δ :“ r`k :“ labeljkpskqηk | k P LV s, and γ1 :“ rx :“ γpxq | x R domainpδqs. Then:
δ and γ1 have disjoint domains, and domainpδq Y domainpγ1q “ domainpγq;
γ1 maps to elements of B, and each `kγ1 P B for k R LV ;
each pδ Y γ1qpxq Ñ˚

Rlab
γpxq;

for k P t1, . . . , nuzLV : labeljkpskqηk Ñ˚
R `kγ “ `kγ

1 P B;
hence, by the induction hypothesis, `kγ1 P NFjkpsk, ηkq for k P t1, . . . , nuzLV ;
q Ñ˚

Rlab
fip~̀qpδ Y γ

1q ÑRlab labeli´1prqpδ Y γ
1q Ñ˚

Rlab
labeli´1prqγ Ñ

˚
Rlab

t;
labeli´1prqpδ Y γ

1q “ labeli´1prγ
1qδ since γ1 maps to data terms;

δ “ χ, where χ “ r`k :“ NFjkpsk, ηkq | k P LV s;
thus, by the induction hypothesis, labeli´1prγ

1qχÑ˚
R t implies t P NF i´1prγ1, χq;

this gives ConfirmedirfpNFj1ps1, η1q, . . . ,NFjnpsn, ηnqq « ts “ J.

(B), both cases. We prove (B) by two additional induction hypotheses; the second on the
depth of ξ, the third on the size of u. Consider the form of u.

If u “ fpu1, . . . , umq, then u has base type, so n “ 0 and t P NF ipu, ξq if and only if
ConfirmedirfpNF ipu1, ξq, . . . ,NF ipum, ξqq « ts “ J. As we have just seen, this is the
case iff q “ labelipuqξ “ fiplabelipu1qξ, . . . , labelipumqξq Ñ˚

Rlab
t.

If u P V, then since domainpξq Ě FV puq we can write ξpuq “ NF i1pu1, ξ1q, and have

NF ipu, ξqpNFj1ps1, η1q, . . . ,NFjnpsn, ηnqq

“ NF ipu1, ξ1qpNFj1ps1, η1q, . . . ,NFjnpsn, ηnqq

FSCD 2016



49:26 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

Also,

plabelipuqξq ¨ plabelj1ps1qη1q ¨ ¨ ¨ plabeljnpsnqηnq
“ ξpuq ¨ plabelj1ps1qη1q ¨ ¨ ¨ plabeljnpsnqηnq
“ plabeli1pu1qξ1q ¨ plabelj1ps1qη1q ¨ ¨ ¨ plabeljnpsnqηnq

Noting that ζ 1 has a smaller depth than ζ, we complete by the second induction hypothesis.
If u “ v ¨ w, then

NF ipu, ξqpNFj1ps1, η1q, . . . ,NFjnpsn, ηnqq

“ NF ipv, ξqpNF ipw, ξq,NFj1ps1, η1q, . . . ,NFjnpsn, ηnqq

Additionally,

plabelipuqξq ¨ plabelj1ps1qη1q ¨ ¨ ¨ plabeljnpsnqηnq
“ plabelipvqξq ¨ plabelipwqξq ¨ plabelj1ps1qη1q ¨ ¨ ¨ plabeljnpsnqηnq

We complete by the third induction hypothesis.
Finally, if u “ λx.u1, then n ą 0 by type restrictions. Then

NF ipu, ξqpNFj1ps1, η1q, . . . ,NFjnpsn, ηnqq

“ NF ipu1, ξ Y rx :“ NFj1ps1, η1qsqpNFj2ps2, η2q, . . . ,NFjnpsn, ηnqq

Now, assuming x to be fresh (which we can safely do by α-conversion), δ :“ ξ Y rx :“
NFj1ps1, η1qs is an NF-substitution. We note that:

q “ plabelipλx.u1qξq ¨ plabelj1ps1qη1q ¨ ¨ ¨ plabeljnpsnqηnq
“ pλx.plabelipu1qξqq ¨ plabelj1ps1qη1q ¨ ¨ ¨ plabeljnpsnqηnq
Ñβ plabelipu1qξrx :“ labelj1ps1, η1qsq ¨ plabelj2ps2qη2q ¨ ¨ ¨ plabeljnpsnqηnq
“ plabelipu1qδq ¨ plabelj2ps2qη2q ¨ ¨ ¨ plabeljnpsnqηnq
“: q1

As q reduces to q1, we use the first induction hypothesis to obtain q1 Ñ˚
Rlab

t iff
t P NF ipu1, ξ Y rx :“ NFj1ps1, η1qsqpNFj2ps2, η2q, . . . ,NFjnpsn, ηnqq. This proves the
theorem since Lemma A6 gives us that q Ñ˚

Rlab
t if and only if q1 Ñ˚

Rlab
t. đ

Finally, we consider the proof of complexity. Again, we split this into several parts. To
start, we define a counter notion to order :

§ Definition A8. The length bound of a type σ is the length n` 1 of the longest sequence
σ1 ñ . . . ñ σn ñ ι occurring in it. Formally, lengthboundpσ1 ñ . . . ñ σn ñ ιq “

maxpn` 1, lengthboundpσ1q, . . . , lengthboundpσnqq.

§ Lemma A9. If a type σ has order k and length bound at most i, then cardpJσKq ď
expk`1

2 pik`1 ¨Nq, where N is the number of elements in B.

Proof. By induction on the form of σ; write σ “ σ1 ñ . . . ñ σn ñ ι with 0 ď n ă i and



C. Kop and J. G. Simonsen 49:27

each σi having order at most k ´ 1 and length bound at most i. Then:

cardpJσ1 ñ . . .ñ σn ñ ιKq “ cardpp¨ ¨ ¨ pJιKJσnKqJσn´1K ¨ ¨ ¨ qJσ1Kq

“ p¨ ¨ ¨ pcardpJιKqcardpJσnKqqcardpJσn´1Kq ¨ ¨ ¨ qcardpJσ1Kq

“ cardpJιKqcardpJσnKq¨¨¨cardpJσ1Kq

ď 2N ¨cardpJσnKq¨¨¨cardpJσ1Kq psince JιK Ď PpBqq
ď 2N ¨expk2 pi

k
¨Nq¨¨¨expk2 pi

k
¨Nq pby induction hypothesisq

“ 2N ¨expk2 pi
k
¨Nqn

ď 2expk2 pi
k
¨N ¨n`Nq pby (**)q

“ expk`1
2 pn ¨ ik ¨N `Nq

ď expk`1
2 pi ¨ ik ¨Nq pas n ¨ ik ` 1 ď pn` 1q ¨ ik ď i ¨ ikq

“ expk`1
2 pik`1 ¨Nq

(**) Here, we make an additional claim: N ¨ expk2pm ¨Nqn ď expk2pm ¨N ¨n`Nq for m, k ě 1
and all X. This claim obviously holds if N “ 0; for N ą 0 we prove it by induction on k:

if k “ 1 then N ¨ p2m¨N qn “ N ¨ 2m¨N ¨n ď 2N ¨ 2m¨N ¨n “ 2N`m¨N ¨n;
if the claim is known for k, thenN ¨expk`1

2 pm¨Nqn “ N ¨expk2p2m¨N qn ď expk2p2m¨N ¨n`Nq;
we are done if we can prove that 2m¨N ¨ n`N ď 2m¨N ¨n`N , which holds because always:

2X ¨ n ď 2X¨n when X ě 1: if n “ 0 both sides are 0, if n “ 1 both sides are 2X , if
n ě 2 and X “ 1 the statement becomes 2n ď 2n which indeed holds for n ě 2, and if
n ě 2 and X ě 2 we obtain 2X ¨ n ď 2X ¨ 2n “ 2X`n ď 2X¨n;
2X `N ď 2X ` 2X ¨N “ 2X ¨ p1`Nq ď 2X ¨ 2N “ 2X`N . đ

Lemma A9 bounds the sizes of the sets iterated over in the algorithm. Preparations done,
consider the theorem:

§ Theorem 23. If pF ,Rq has order k, then Algorithm 20 runs in time Opexpk2pm ¨ nqq for
some m.

Proof. In the following, denote by “the set of types occurring in an AFS” pF ,Rq the set Σ
of all σ1, . . . , σn, ι such that some f : rσ1 ˆ ¨ ¨ ¨ ˆ σns ñ ι P F , and all their subtypes. We let:

a P N denote the maximal arity of symbols in F ;
k P N denote the order of the AFS pF ,Rq, so k ´ 1 the maximal type order in Σ;
i P N denote a length bound which bounds all σ in Σ;
d P N denote the maximal size (counting symbols, variables, applications and abstractions)
of right-hand sides in R.

All numbers above are fixed by the given AFS and should thus be considered constant (the
only input to the algorithm is s). We also define:

N :“ the number of elements in B (note that this number is linear in |s|);
X :“ expk2pik ¨Nq, which bounds cardpσq for all σ P Σ by Lemma A9;
Y :“ |D| ¨Xa ¨N ď |D| ¨ expk2ppik ` a` 1q ¨Nq, which therefore bounds the number of
different statements fp ~Aq « t considered in the algorithm;

Now, for every right-hand side r, we first make the following observation: every subterm of r
has a type which is a sort or in Σ. This follows because we have assumed right-hand sides to
be β-normalised, so all strict subterms are either the direct argument of some f P F or of an
application F ¨ r1 ¨ ¨ ¨ rn with F a variable which occurs as a direct argument in the left-hand
side. Thus, in particular, the binders of abstractions have a type of at most order k ´ 2.

FSCD 2016



49:28 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

Consider the cost of calculating some NF iprγ, ηq if all γpxq are data terms (or variables)
and Confirmedi is already known; the exact cost depends on implementation details, so for
simplicity let Z denote a bound to the cost of:

performing a substitution r1γ;
looking up a truth value in Confirmedi if A1, . . . , An, t are already calculated;
looking up an element in η;
calculating a function ApBq, with A P Jσ ñ τK, B P JσK for some σ, τ P Σ.

Induction on the size |r| of r shows that the cost of calculating NF iprγ, ηq is bounded by
Z ¨X |r| ¨ |r|:

if r “ cp. . . q with c P C, or r is a variable in domainpγq, this cost is at most Z;
if r is a variable in domainpηq, this cost is at most Z;
if r “ u ¨ v, we must calculate NF ipuγ, ηq and NF ipvγ, ηq, followed by a function
calculation, so this cost is at most

pZ ¨X |r1| ¨ |r1|q ` pZ ¨X
|r2| ¨ |r2|q ` Z ď pZ ¨X |r| ¨ |r1|q ` pZ ¨X

|r| ¨ |r2|q ` pZ ¨X
|r| ¨ 1q

“ pZ ¨X |r|q ¨ p|r1| ` |r2| ` 1q
“ Z ¨X |r| ¨ |r|

if r “ fpr1, . . . , rnq, then we must calculate NF ipriγ, ηq for each subterm, so we obtain a
cost bounded by

p
řn
i“1 Z ¨X

|ri| ¨ |ri|q ` Z ¨N ď p
řn
i“1 Z ¨X

|r| ¨ |ri|q ` pZ ¨X
|r| ¨ 1q

“ Z ¨X |r| ¨ p|r1| ` . . . |rn| ` 1q
“ Z ¨X |r| ¨ |r|

if r “ λx.r1, then there are fewer than X different NF ipr1, ζq to calculate, so the cost is
bounded by X ¨ pZ ¨X |r1| ¨ |r1|q ď Z ¨X |r

1
|`1 ¨ |r1| ď Z ¨X |r| ¨ |r|.

Even in a non-optimal implementation, we will have Z ď c ¨Y b for some b, c, which suffices for
our purposes. This bounds the cost of determining a query t P NF iprγ, ηq by c ¨ d ¨ Y b ¨Xd.

Observing that I ď Y ` 2, as the number of J-statements increases by at least 1 in every
step before I, we thus obtain:

there are at most Y ` 2 steps;
in each step, we investigate at most Y claims;
for each claim, we consider |R| possible rules;
for each rule, we investigate at most p2N qa “ 2a¨N substitutions γ;
for each investigation, we must test membership in some NF iprγ, ηq.

The cost of the lookup to Confirmedi´1 is negligible compared to the cost of investigating all
substitutions. Combining these costs and assuming N ě 1, we obtain a bound of

pY ` 2q ¨ Y ¨ |R| ¨ p2a¨N ` 1q ¨ c ¨ d ¨ Y b ¨Xd

“ p|D| ¨Xa ¨N ` 2q ¨ |D| ¨Xa ¨N ¨ |R| ¨ p2a¨N ` 1q ¨ c ¨ d ¨ p|D| ¨Xa ¨Nqb ¨Xd

ď p2 ¨ |D| ¨Xa ¨Nq ¨ |D| ¨Xa ¨N ¨ |R| ¨ p2a¨N`1q ¨ c ¨ d ¨ p|D|b ¨Xa¨b ¨N bq ¨Xd

“ 2 ¨ c ¨ d ¨ |D|2`b ¨ |R| ¨X2a`ab`d ¨ 2a¨N`1 ¨N2`b

“ Opexpk2pik ¨Nq2a`ab`d ¨ 2a¨N`1 ¨ 2N ¨p2`bqq
ď Opexpk2pik ¨ p3a` ab` d` 2q ¨N ` 2b` 1qq
“ Opexpk2px ¨N ` yqq for fixed numbers x and y

As N is linear in the size of the input, the result follows. đ



C. Kop and J. G. Simonsen 49:29

B An extended example of SAT-solving using cons-free rewriting

To see how the algorithm from Figure 1 works in practice, consider the formula px1 _ x2q ^

p x1 _ x2 _ x3q ^ px2 _ x3q. This corresponds to the following string and term:

L “ 11?#000#?11# L “ 1p1p?p#p0p0p0p#p?p1p1p#p�qqqqqqqqqqqq

We consider a successful reduction from decidepLq to true. For readability, we will omit the
brackets and �, and simply denote L as 11?#000#?11 (and similar for its subterms).

decidepLq
ÑR assignp11?#000#?11, �, �, Lq
ÑR assignp1?#000#?11, �, eitherp11?#000#?11,�q, Lq
ÑR assignp?#000#?11, eitherp1?#000#?11,�q, eitherp11?#000#?11,�q, Lq
ÑR assignp#000#?11, eitherp1?#000#?11,�q,

eitherp?#000#?11, eitherp11?#000#?11,�qq, Lq
ÑR mainpeitherp1?#000#?11,�q, eitherp?#000#?11, eitherp11?#000#?11,�qq, Lq

This derivation corresponds to choosing the assignment rx1 :“ K, x2 :“ J, x3 :“ Ks. For
brevity, let us write X2 for eitherp1?#000#?11,�q and X3,1 for eitherp?#000#?11,
eitherp11?#000#?11,�qq. Then X1 Ñ

˚
R 1?#000#?11 and both X3,1 Ñ

˚
R ?#000#?11

and X3,1 Ñ
˚
R 11?#000#?11 using the either rules. Technically, both terms also reduce to

�, but we will not use this.
We continue:

mainpX2, X3,1, 11?#000#?11#q
ÑR testpX2, X3,1, 1?#000#?11#,

eqpX2, 11?#000#?11#q, eqpX3,1, 11?#000#?11#qq
Ñ˚

R testpX2, X3,1, 1?#000#?11#, eqp. . . q, eqp11?#000#?11#, 11?#000#?11#qq
ÑR testpX2, X3,1, 1?#000#?11#, eqp. . . q, eqp1?#000#?11#, 1?#000#?11#qq
ÑR testpX2, X3,1, 1?#000#?11#, eqp. . . q, eqp?#000#?11#, ?#000#?11#qq
ÑR testpX2, X3,1, 1?#000#?11#, eqp. . . q, eqp#000#?11#,#000#?11#qq
ÑR testpX2, X3,1, 1?#000#?11#, eqp. . . q, trueq
ÑR mainpX2, X3,1, 1?#000#?11#q

That is, we tested the first variable of the first clause x1_x2 against our non-deterministically
chosen assignment, and concluded that it does not suffice (since x1 is mapped to K, as
evidenced by X3,1 Ñ

˚
R 11?#000#?11#). We continue with the next variable:

mainpX2, X3,1, 1?#000#?11#q
ÑR testpX2, X3,1, ?#000#?11#,

eqpX2, 1?#000#?11#q, eqpX3,1, 1?#000#?11#qq
Ñ˚

R testpX2, X3,1, ?#000#?11#, eqp1?#000#?11#, 1?#000#?11#q, eqp. . . qq
ÑR testpX2, X3,1, ?#000#?11#, eqp?#000#?11#, ?#000#?11#q, eqp. . . qq
ÑR testpX2, X3,1, ?#000#?11#, eqp#000#?11#,#000#?11#q, eqp. . . qq
ÑR testpX2, X3,1, ?#000#?11#, true, eqp. . . qq
ÑR mainpX2, X3,1, skipp?#000#?11#qq
ÑR mainpX2, X3,1, skipp#000#?11#qq
ÑR mainpX2, X3,1, 000#?11#q

Thus, testing the second variable (x2) against our assignment succeeded, so the main function

FSCD 2016



49:30 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

moves on to the next clause.

mainpX2, X3,1, 000#?11#q
ÑR testpX2, X3,1, 00#?11#, eqpX3,1, 000#?11#q, eqpX2, 000#?11#qq
Ñ˚

R testpX2, X3,1, 00#?11#, eqp11?#000#?11#, 000#?11#q, eqp. . . qq
ÑR testpX2, X3,1, 00#?11#, eqp1?#000#?11#, 00#?11#q, eqp. . . qq
ÑR testpX2, X3,1, 00#?11#, eqp?#000#?11#, 0#?11#q, eqp. . . qq
ÑR testpX2, X3,1, 00#?11#, eqp#000#?11#,#?11#q, eqp. . . qq
ÑR testpX2, X3,1, 00#?11#, true, eqp. . . qq
ÑR mainpX2, X3,1, skipp00#?11#qq
ÑR mainpX2, X3,1, skipp0#?11#qq
ÑR mainpX2, X3,1, skipp#?11#qq
ÑR mainpX2, X3,1, ?11#q

The second clause was satisfied already by the valuation for x1, so the reduction has moved
towards the last clause. Note that here eqp11?#000#?11#, 000#?11#q reduces to true,
because what is compared is not the exact string, but rather the number of symbols before
the first #. From the current state, we quickly complete the derivation:

mainpX2, X3,1, ?11#q
ÑR mainpX2, X3,1, 11#q
ÑR testpX2, X3,1, 1#, eqpX2, 11#q, eqpX3,1, 11#qq
ÑR testpX2, X3,1, 1#, eqp1?#000#?11#, 11#q, eqp. . . qq
ÑR testpX2, X3,1, 1#, eqp?#000#?11#, 1#q, eqp. . . qq
ÑR testpX2, X3,1, 1#, eqp#000#?11#,#q, eqp. . . qq
ÑR testpX2, X3,1, 1#, true, eqp. . . qq
ÑR mainpX2, X3,1, skipp1#qq
ÑR mainpX2, X3,1, skipp#qq
ÑR mainpX2, X3,1, �q

ÑR true


	Introduction
	Preliminaries
	Computational complexity
	Higher-order rewriting

	Cons-free rewriting
	Properties of Cons-free Term Rewriting
	A larger example

	Simulating EkTIME Turing machines
	Finding normal forms
	Changing the restrictions
	Non-left-linearity
	Product Types

	Future work
	Proofs omitted from the main text
	Proofs of Section 3
	Proofs of Section 4
	Proofs of Section 5

	An extended example of SAT-solving using cons-free rewriting

