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—— Abstract

Constructor rewriting systems are said to be cons-free if, roughly, constructor terms in the right-
hand sides of rules are subterms of constructor terms in the left-hand side; the computational

intuition is that rules cannot build new data structures. It is well-known that cons-free program-
ming languages can be used to characterize computational complexity classes, and that cons-free
first-order term rewriting can be used to characterize the set of polynomial-time decidable sets.

We investigate cons-free higher-order term rewriting systems, the complexity classes they
characterize, and how these depend on the order of the types used in the systems. We prove that,
for every k > 1, left-linear cons-free systems with type order k characterize E¥TIME if arbitrary
evaluation is used (i.e., the system does not have a fixed reduction strategy).

The main difference with prior work in implicit complexity is that (i) our results hold for
non-orthogonal term rewriting systems with possible rule overlaps with no assumptions about
reduction strategy, (ii) results for such term rewriting systems have previously only been obtained
for k = 1, and with additional syntactic restrictions on top of cons-freeness and left-linearity.

Our results are apparently among the first implicit characterizations of the hierarchy E =
E!TIME ¢ E*TIME < ---. Our work confirms prior results that having full non-determinism
(via overlaps of rules) does not directly allow characterization of non-deterministic complexity
classes like NE. We also show that non-determinism makes the classes characterized highly
sensitive to minor syntactic changes such as admitting product types or non-left-linear rules.
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1 Introduction

In [14], Jones introduces cons-free programming: working with a small functional programming
language, cons-free programs are exactly those where function bodies cannot contain use
of data constructors (the “cons” operator on lists). Put differently, a cons-free program is
read-only: data structures cannot be created or altered, only read from the input; and any
data passed as arguments to recursive function calls must thus be part of the original input.

The interest in such programs lies in their applicability to computational complexity: by
imposing cons-freeness, the resulting set of programs can only decide the sets in a proper
subclass of the Turing-decidable sets, indeed are said to characterize the subclass. Jones
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goes on to show that adding further restrictions such as type order or enforcing tail recursion
lowers the resulting expressiveness to known classes. For example, cons-free programs with
data order 0 can decide exactly the sets in PTIME, while tail-recursive cons-free programs
with data order 1 can decide exactly the sets in PSPACE. The study of such restrictions and
the complexity classes characterized is a research area known as implicit complerity and has
a long history with many distinct approaches (see, e.g., [4, 6, 5, 7, 8, 12, 17]).

Rather than a toy language, it is tantalizing to consider term rewriting instead. Term
rewriting systems have no fixed evaluation order (so call-by-name or call-by-value can be
introduced as needed, but are not required); and term rewriting is natively non-deterministic,
allowing distinct rules to be applied (“functions to be invoked”) to the same piece of syntax,
hence could be useful for extensions towards non-deterministic complexity classes. Implicit
complexity using term rewriting has seen significant advances using a plethora of approaches
(e.g. [1, 2, 3]). Most of this research has, however, considered fixed evaluation orders (most
prominently innermost reduction), and if not, then systems which are either orthogonal, or
at least confluent (e.g. [2]). Almost all of the work considers only first-order rewriting.

The authors of [11] provide a first definition of cons-free term rewriting without constraints
on evaluation order or confluence requirements, and prove that this class—limited to first-
order rewriting—characterizes PTIME. However, they impose a rather severe partial linearity
restriction on the programs. This paper seeks to answer two questions: (i) what happens if no
restrictions beyond left-linearity and cons-freeness are imposed? And (ii) what if higher-order
term rewriting—including bound variables as in the lambda calculus—is allowed? We obtain
that k*P-order cons-free term rewriting exactly characterizes EFTIME. This is surprising
because in Jones’ rewriting-like language, k'"-order programs characterize EXPF!TIME:
surrendering both determinism and evaluation order thus significantly increases expressivity.

Note that an appendix containing full proofs is included at the end of the paper.

2 Preliminaries

2.1 Computational complexity

We presuppose introductory working knowledge of computability and complexity theory
(corresponding to standard textbooks, e.g., [13]). Notation is fixed below.

Turing Machines (TMs) are triples (A, S, T) where A is a finite set of tape symbols such
that A 2 T u {_}, where I 2 {0, 1} is a set of initial symbols and |, ¢ I is the special blank
symbol; S 2 {start, accept,reject} is a finite set of states, and T is a finite set of transitions
(i,r,w,d,j) with i € S\{accept,reject} (the original state), r € A (the read symbol), w e A
(the written symbol), d € {L,R} (the direction), and j € S (the result state). We sometimes

write this transition as ¢ g j. All TMs in the paper are deterministic and (which we can
assume wlog.) do not get stuck: for every pair (¢,7) with ¢ € S\{accept,reject} and r € A
there is exactly one transition (4,7, w,d, j). Every TM has a single, right-infinite tape.

A walid tape is a right-infinite sequence of tape symbols with only finitely many not .. A
configuration of a TM is a triple (¢, p, s) with ¢ a valid tape, p € N and s € S. The transitions
T induce a binary relation = between configurations in the obvious way.

A TM with input alphabet I decides X < I if for any string x € I"", we have x € X
iff (Lz1 ... Tpow--.,0,start) =% (¢,4,accept) for some t,4, and (Lz1 ... Tpi---,0,start)
=* (t,41,reject) otherwise (i.e., the machine halts on all inputs, ending in accept or reject
depending on whether z € X). If f : N — N is a function, a (deterministic) TM runs in
time An.f(n) if, for each n € N\{0} and each = € I": (LzLL...,0,start) =< (¢4, s) for
s € {accept, reject}, where =</(") denotes a sequence of at most f(n) transitions.
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Complexity and the ETIME hierarchy
For k,n > 0, let exp)(n) = n and exp5*!(n) = 2exp5 () — exph (2m).

» Definition 1. Let f : N — N be a function. Then, TIME (f(n)) is the set of all S < {0,1}*
such that there exist ¢ > 0 and a deterministic TM running in time An.a- f(n) that decides S
(i.e., S is decidable in time O(f(n))). For k > 1 define: E*TIME = | J,_ TIME (exph(an))

Observe in particular that E'TIME = | J,. TIME (exp3(an)) = U ey TIME (2°7) = E
(where E is the usual complexity class of this name, see e.g., [19, Ch. 20]).

Note that for any d,k > 1, we have (exph(z))? = gd-expy” (@) < gexpy ' (de) exph (dz).

Hence, if P is a polynomial with non-negative integer coefficients and the set S < {0,1}* is

decided by an algorithm running in time O(P(exp}(an))) for some a € N, then S € EFTIME.

Using the Time Hierarchy Theorem [20], it is easy to see that E = E'TIME < E*TIME ¢

E3TIME < ---. The union Uken EFTIME is the set ELEMENTARY of elementary languages.

2.2 Higher-order rewriting

Unlike first-order term rewriting, there is no single, unified approach to higher-order term
rewriting, but rather a number of different co-extensive systems with distinct syntax; for an
overview of basic issues, see [21]. We will use Algebraic Functional Systems (AFSs) [15, 9],
in the simplest form (which disallows partial applications). However, our proofs do not use
any particular features of AFSs that preclude using different higher-order formalisms.

Types and Terms

We assume a non-empty set S of sorts, and define types and type orders as follows: (i) every
L€ S is a type of order 0; (ii) if o, 7 are types of order n and m respectively, then o = 7 is
a type of order max(n + 1, m). Here = is right-associative, so 0 = 7 = 7 should be read
o= (1 = m). A type declaration of order k > 0 is a tuple [01 X -+ X 0,,] = ¢ with all o;
types of order at most £ — 1, and ¢ € S; if n = 0 this declaration may simply be denoted ¢.

We additionally assume given disjoint sets F of function symbols and V of variables. Each
symbol in F is associated with a unique type declaration, and each variable in V with a
unique type. The set T(F,V) of terms over F and V consists of those expressions s such
that - s : o can be derived for some type o using the following clauses:

(var) Fxz:o ifx:0eV

(app) Fs-t:T ifs:o=7andt:o

(abs) FAx.s:o=T ifr:oceVands:rt

(fun) F f(s1,..-,8n) 1 ¢t iffio1x...x0op]=teF and s1:01,...,8, : On

Clearly, each term has a unique type. Note that a function symbol f : [oq X ... x o] = ¢
takes exactly n arguments, and its output type ¢ is a sort. The abstraction construction \z.s
binds occurrences of x in s as in the A-calculus, and a-conversion is defined for terms mutatis

mutandis; we identify terms modulo a-conversion, renaming bound variables if necessary.

Application is left-associative. The set of variables of s which are not bound is denoted
FV(s). A term s is closed if FV(s) = . We say that a term s has base type if - s: 1€ S.

» Example 2. We will often use extensions of the signature Fgiring, given by:

true : bool 0 : [string] = string > : string
false : bool 1 : [string] = string

Terms are for instance true, Az.0(1(x)) and (Ax.0(x)) - 1(y). The first and last of these
terms have base type, and the first two are closed; the last one has y as a free variable.
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A substitution is a type-preserving map from V to 7 (F,V) which is the identity on all but
finitely many variables. Substitutions 7 are extended to arbitrary terms s, notation sy, by
using a-conversion to rename all bound variables in s to fresh ones, then replacing each
unbound variable x by y(z). A context C[] is a term in T (F,V) in which a single occurrence
of a variable is replaced by a symbol []1¢ F u V. The result of replacing []in C[] by a term s
(of matching type) is denoted C[s]. Free variables may be captured; e.g. (Az.[])[z] = Az.z.
If s = C[t] we say that t is a subterm of s, notation t < s, or t < s if C[] # [

Rules and Rewriting

A rule is a pair £ — r of terms in 7 (F, V) with the same sort (i.e. = £ : ¢ and - r : ¢ for some
t € 8), such that ¢ has the form f(¢y,...,¢,) with f € F and such that FV(r) € FV({). A
rule ¢ — r is left-linear if every variable occurs at most once in £. We assume given a set R
of rules, and define the one-step rewrite relation —% on 7 (F,V) as follows:

Clty] —-r C[rv] with £ — r € R, C a context, v a substitution

Cl(Az.s)-t] —-r C[s[z:=1]]

We may write s —g ¢ for a rewrite step using (beta). Let —7; denote the transitive closure
of - and —% the transitive-reflexive closure. We say that s reduces to t if s > t. A term
s is in normal form if there is no ¢ such that s —x ¢, and t is a normal form of s if s =%t
and ¢ is in normal form. An AFS is a pair (F,R), generating a set of terms and a reduction
relation. The order of an AFS is the maximal order of any type declaration in F.

» Example 3. Recall the signature Fgiring from Example 2; let Feoune be its extension with
succ : [string] = string. We consider the AFS (Feount; Reount) With the following rules:

(A) succ(>) — 1(>) (B) succ(0(xs))
(C) succ(1(zs))

—  1(xs)

—  0(succ(zs))

This is a first-order AFS, implementing the successor function on a binary number expressed
as a bitstring with the least significant digit first. For example, 5 is represented by 1(0(1(r>))),
and indeed succ(1(0(1(>>)))) —r 0(succ(0(1(>>)))) == 0(1(1(>>))), which represents 6.

» Example 4. Alternatively, we may define a bit-sequence as a function: let Frocouns b€ the
extension of Fgiring With not : [bool] = bool, ite : [bool x bool X bool] = bool and
all, succ: [(bool = bool) x string| = string. Let Ryocount cOnsist of:

(A)  ite(true,z,y) — 2z (C) not(z) — ite(wx,false,true)

(B) ite(false,z,y) — y (D) all(F,>) — F->

(E) all(F,a(zs)) — ite(F -a(xs),all(F,zs),false) [for a € {0,1}]
(F) succ(F,>>) — mnot(F )

(G)  succ(F,a(xzs)) — ite(all(F,xs),not(F -a(xs)),F -a(xs)) [for ae {0,1}]

Note that (E) and (G) each represent two rules: one for each choice of a. This AFS is second-
order, due to all and succ. A function F represents a (potentially infinite) binary number,
with the i*" bit given by F -t for any bitstring ¢ of length i (counting from i = 0, so ¢t = 1>).
Thus, the number 0 is represented by, e.g., Ax.false, and 1 by ONE ::= Az.succ(\y.false,x).
Indeed ONE - > = (Az.succ(\y.false,x)) - > —3 succ(Ay.false,>) —x not((\y.false) -
I>) —3 not(false) —g true, and ONE - 0%(>) —% false for k > 0.

We fix a partitioning of F into two disjoint sets, D of defined symbols and C of constructor
symbols, such that f € D for all f(¢) > r e R. A term s is a constructor term if it is in
T(C,V) and a proper constructor term if it also contains no applications or abstractions. A
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closed proper constructor term is also called a data term. The set of data terms is denoted
TA. Note that data terms are built using only clause (fun). A term f(s1,...,S,) with f € D
and each s; € TA is called a basic term. A constructor rewriting system is an AFS where
each rule f({y,...,¢,) — r € R satisfies that all £; are proper constructor terms (and f € D).
An AFS is a left-linear constructor rewriting system if moreover each rule is left-linear.

In a constructor rewriting system, g-reduction steps can always be done prior to other
steps: if s has a normal form ¢ and s —4 ¢, then also t =% ¢. Therefore we can (and will!)
safely assume that the right-hand sides of rules are in normal form with respect to —g.

» Example 5. The AFSs from Examples 3 and 4 are left-linear constructor rewriting systems.
In Example 3, C = Fgyring and D = {succ}. If a rule 0(>>) — > were added to Recount, it
would no longer be a constructor system, as this would force 0 to be in D, conflicting with
rule (B). A rule such as equal(xs,xs) — true would break left-linearity.

» Remark. Constructor rewriting systems—typically left-linear—are very common both in
the literature on term rewriting and in functional programming, where similar restrictions
are imposed. Left-linear systems are well-behaved: contraction of non-overlapping redexes
cannot destroy redexes that they themselves are arguments of. Constructor systems avoid
non-root overlaps, and allow for a clear split between data and intermediate terms.

They are, however, less common in the literature on higher-order term rewriting, and the
notion of a proper constructor term is new for AFSs (although the exclusion of abstractions
and applications in the left-hand sides roughly corresponds to fully extended pattern HRSs
in Nipkow’s style of higher-order rewriting [18]).

Deciding problems using rewriting

Like Turing Machines, an AFS can decide a set X < I'™ (where [ is a finite set of symbols).
Consider AFSs with a signature F = C u D where C contains symbols [> : string, true:
bool, false :bool and a: [string] = string for all a € I. There is an obvious correspon-
dence between elements of I and data terms of sort string; if x € I't, we write X for the
corresponding data term. The AFS accepts D < It if there is a designated defined symbol
decide : [string] = bool such that, for every « € I* we have decide(X) —% trueiff x € D.
More generally, we are interested in the reductions of a given basic term to a data term.
We use the acceptance criterion above—reminiscent of the acceptance criterion of non-
deterministic Turing machines—because term rewriting is inherently non-deterministic unless
further constraints (e.g., orthogonality) are imposed. Thus, an input z is “rejected” by
a rewriting system iff there is no reduction to true from decide(X); and as evaluation is
non-deterministic, there may be many distinct reductions starting from decide(X).

3 Cons-free rewriting

Since the purpose of this research is to find groups of programs which can handle restricted
classes of Turing-computable problems, we will impose certain limitations. In particular, we
will limit interest to cons-free left-linear constructor rewriting systems.

» Definition 6. A rule ¢ — r, presented using a-conversion in a form where all binders are
distinct from FV(¢), is cons-free if for all subterms s = f(s1,...,s,) <7 with f € C, we have
s<1lor se DA A left-linear constructor AFS (F,R) is cons-free if all rules in R are.

This definition corresponds largely to the definitions of cons-freeness appearing in [11, 14].
In a cons-free AFS, it is not possible to create more data, as we will see in Section 3.1.
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» Example 7. The AFS from Example 3 is not cons-free due to rules (B) and (C). The
AFS from Example 4 is cons-free (in rules (E) and (G), a(zs) is allowed to occur on the
right despite the constructor a, because it also occurs on the left). However, there are few
interesting basic terms, as we do not consider for instance succ(Az.false, >) basic.

» Remark. The limitation to left-linear constructor AFSs is standard, but also necessary: if
either restriction is dropped, our limitation to cons-free AFSs becomes meaningless. In the
case of constructor systems, this is obvious: if defined symbols are allowed to occur within a
left-hand side, then we could simply let D := F and have a “cons-free” system. The case of
left-linearity is a bit more sophisticated; this we will study in more detail in Section 6.

As the first two restrictions are necessary to give meaning to the third, we will consider
the limitation to left-linear constructor AFSs implicit in the notion “cons-free”.

3.1 Properties of Cons-free Term Rewriting

As mentioned, cons-free term rewriting cannot create new data. This means that the set of
data terms that might occur during a reduction starting in some basic term s are exactly the
data terms occurring in s, or those occurring in the right-hand side of some rule. Formally:

» Definition 8. Let (F,R) be a constructor AFS. For a given term s, the set B contains all
data terms t such that (i) s> ¢, or (ii) 7 &> ¢ for some rule { — r € R.

Bs is a set of data terms, is closed under subterms and, since we have assumed R to be
fixed, has a linear number of elements in the size of s. The property that no new data is
generated by reducing s is formally expressed by the following result:

» Definition 9 (B-safety). Let B < TA be a set which (i) is closed under taking subterms,
and (ii) contains all data terms occurring as a subterm of the right-hand side of a rule in R.
A term s is B-safe if for all ¢t with s > ¢: if ¢ has the form ¢(¢4,...,t,,) with ¢ € C, then t € B.

» Lemma 10. If s is B-safe and s —x t, then t is B-safe.

Proof Sketch. By induction on the form of s; the result follows trivially by the induction
hypothesis if the reduction does not take place at the root, leaving only the base cases

= (Az.w) v >g u[r :=v] =t and s = €y —>g ry = t. The first of these is easy by
induction on the form of the (B-safe!) term w, the second follows by induction on the form
of r (which, as the right-hand side of a cons-free rule, has convenient properties). <

Thus, if we start with a basic term f(5), any data terms occurring in a reduction f(5) —% t
(directly or as subterms) are in Bjz). This insight will be instrumental in Section 5.

» Example 11. By Lemma 10, functions in a cons-free AFSs cannot build recursive data. To
code around this, we might use subterms of the input as a measure of length. Consider the
decision problem whether a given bitstring is a palindrome. We cannot use a rule such as
decide(cs) — equal(cs, reverse(cs)) since, by Lemma 10, it is impossible to define reverse.
Instead, a typical solution uses a string ys of length & to find ¢ in T5...Ccp_1:

decide(cs) — palindrome(cs,cs)
palindrome(cs,>) — true
palindrome(cs,a(ys)) — and(palindrome(cs,ys),chka(cs,ys)) [a € {0,1}]
and(true,z) — x chk,(a(xs),>>) — true [a€ {0,1}]
and(false,x) — false chk,(b(xs),r>) — false [a,be{0,1} Aa # D]

chk,(b(zs), c(ys)) — chka(zs,ys) [a,b,ce {0,1}]

(The signature extends Fstring, but is otherwise omitted as types can easily be derived.)
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Through cons-freeness, we obtain another useful property: we do not have to consider
constructors which take functional arguments.

» Lemma 12. Given a cons-free AFS (F,R) with F =D uC, letY ={c:[o1 x- - x0op] =
L€ C some oy is not a sort}. Define F' := F\Y, and let R’ consist of those rules in R not
using any element of Y in either left- or right-hand side. Then (a) all data and B-safe terms
are in T(F', &), and (b) if s is a basic term and s =% t, thent € T(F',V) and s —%, t.

Proof. Since data terms have base type, and the subterms of data terms are data terms, we
have (a). Then, B-safe terms can only be matched by rules in R’, so Lemma 10 gives (b). «

Therefore we may safely assume that all elements of C are at most first-order.

3.2 A larger example

None of our examples so far have taken advantage of the native non-determinism of term
rewriting. To demonstrate the possibilities, we consider a first-order cons-free AFS that solves
the Boolean satisfiability problem (SAT). This is striking because, in Jones’ language in [14],
first-order programs cannot solve this problem unless P = NP, even if a non-deterministic
choose operator is added [10]. The crucial difference is that we, unlike Jones, do not employ
a call-by-value evaluation strategy.

Given n boolean variables z1,...,z, and a boolean formula @ ::= ¢1 A -+ A ,, the
satisfiability problem considers whether there is an assignment of each x; to T or | such
that i evaluates to T. Here, each clause ¢, has the form a;, v --- v a;,,, where each literal
a;, is either some x;, or —x,. We represent this problem as a string over I := {0, 1, #,7}:
the formula v is represented by L ::= by 1...01n#b21 ... #bm,1 ... b n#, where each b; ; is
1if x; is a literal in ¢y, is 0 if —z; is a literal in ¢;, and is 7 otherwise.

» Example 13. The satisfiability problem for (z1 v —z2) A (x2 v —23) is encoded as 107#710#.

Letting 0,1,#,7 : [string] = string, and assuming other declarations clear from
context, we claim that the AFS in Figure 1 can reduce decide(L) to true iff ¢ is satisfiable.

cq#(zs), #(y) — true  eq(#(ss),a(ys) — false
eq(a(zs),b(ys)) — eq(xs,ys) eq(a(zs),#(ys)) — false } [fora,b € {0, 1,7}]
decide(cs) — assign(cs,>,>,cs)
assign(#(xs), s, t,cs) — main(s,t,cs)
assign(a(xs),s,t,cs) — assign(xs,either(a(zs),s),t,cs)
assign(a(xs),s,t,cs) — assign(xs,s,either(a(zs),t),cs)

} [for a € {0,1,7}]

either(zs,q) — s either(zs,q) — ¢

main(s,t,s)
test(s,t,xs,eq(t,0(xs)),eq(s,0(zs)))

main(s,t, —
=
— test(s,t,xs,eq(s, 1(r5)), eq(t, 1(2s)))

2(xs))
main(s,t,0(xs))
(zs))

main(s,t, 1(zs

main(s,t,>) true test(s,t,xs,true,z) — main(s,t,skip(xs))
main(s,t, #(xs)) false test(s,t,xs,z,true) — main(s,t,xs)
skip(#(zs)) — zs
skip(a(xzs)) — skip(zs) [for a € {0,1,7}]

Figure 1 A cons-free first-order AF'S solving the satisfiability problem

FSCD 2016
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In this AFS, we follow some of the same ideas as in Example 11. In particular, any string
of the form b; ...b,# ... with each b; € {0, 1, 7} is considered to represent the number 7. The
rules for eq are defined so that eq(s,t) tests equality of these numbers, not the full strings.

The key idea new to this example is that we use terms not in normal form to represent a
set of numbers. If we are interested in numbers in {1,...,n}, then a set X < {1,...,n} is
encoded as a pair (s,t) of terms such that, for ¢ € {1,...,n}: s =% ¢ for some representation
g of ¢ if and only if i € X, and t —% ¢ for some representation g of ¢ if and only if i ¢ X.

This is possible because we do not use a call-by-value or similar reduction strategy: an
evaluation of this AFS is allowed to postpone reducing such terms, and we focus on those
reductions. The AFS is constructed in such a way that reductions which evaluate these “sets”
too eagerly simply end in an irreducible, non-data state.

Now, an evaluation starting in decide(L) first non-deterministically constructs a “set” X
containing those boolean variables assigned true: decide(L) —% main(s,t,L). Then, the
main function goes through L, finding for each clause a literal that is satisfied by the
assignment. Encountering for instance b;; = 1, we determine if j € X by comparing both a
reduct of s and of t to j. If s =% “j” then j € X, if t =% “j” then j ¢ X; in either case, we
continue accordingly. If the evaluation state is incorrect, or if s or ¢ both non-deterministically
reduce to some other term, the evaluation gets stuck in a non-data normal form.

» Example 14. To solve satisfiability of (x1 v —z3) A (z2 v —a3), we reduce decide(L),
where L = 107#710#. First, we build a valuation; the choices made by the assign rules
are non-deterministic, but a possible reduction is decide(L) —% main(s,t,L), where s =
either(107#7104#,>) and ¢t = either(7#7104#, either(07#710#,>)). Recall that, since
n = 3, 107#7104 represents 1 while 7#7104# and 07#7104 represent 3 and 2 respectively.
Thus, this corresponds to the valuation [z; := T,z := 1,23 := 1].

Then, the main loop recurses over the problem. Note that s reduces to a term 107# ... and
t reduces to both 7# ... and 074 .... Therefore, main(s,,L) = main(s,t, 117#701#) —%
main(s,t, skip(17#701#)) —% main(s,¢,701#): the first clause is confirmed since z is
mapped to T, so the clause is removed and the loop continues with the second clause. Next,
the loop passes over those variables whose assignment does not contribute to verifying
this clause, until the clause is confirmed by z3: main(s,t,701#) —g main(s, ¢, 01#) —%
main(s,t, 1#) —% main(s,t, skip(#)) —x main(s,t,>) > true.

Using non-determinism, the term in Example 14 could easily have been reduced to false
instead, simply by selecting a different valuation. This is not problematic: by definition,
the AFS accepts the set of satisfiable formulas if decide(L) —% true if and only if L is a
satisfiable formula: false negatives or reductions which do not end in a data state are allowed.

A longer example derivation is given in Appendix B.

4  Simulating EF'TIME Turing machines

In order to see that cons-free term rewriting captures certain classes of decidable sets, we will
simulate Turing Machines. For this, we use an approach very similar to that by Jones [14].
We introduce constructor symbols a : [string] = string for all @ € A (including the
blank symbol, which we shall refer to as B) along with > and the booleans, s : state for
all s € S u {fail}, L,R : direction and action : [string X direction X state] = trans,
end : [state| = trans, NA : trans. We will introduce defined symbols and rules such that,
for any string ¢ € (A\{_})*—represented as the term cs := ¢1(ca(- - - cp(B>) - - - ))—we have:

decide(cs) —% true if and only if (Leow. .., 0, start) =* (¢,i,accept) for some t,i;
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decide(cs) —% false if and only if (Leow. .., 0, start) =* (¢,i,reject) for some t, 1.

As rules may be overlapping, it is possible that decide(cs) will have additional normal forms,
but only one normal form will be a data term.

The rough idea of the simulation is to represent non-negative integers as terms and let
tape(n, p) reduce to the symbol at position p on the tape at the start of the n'" step, while
state(n, p) returns the state of the machine at time n, provided the tape head is at position
p. If the tape head of the machine is not at position p at time n, then state(n,p) should
return fail instead; this makes it possible to test the position of the tape head at any given
time. As the machine is deterministic, we can devise rules to compute these terms from
earlier configurations.

Finding a suitable representation of integers and corresponding manipulating functions is
the most intricate part of this simulation, where we may need both higher-order functions
and non-deterministic rules. Therefore, let us first assume that this can be done. Then, for a
Turing machine which is given to run in time bounded above by Ax.P(x), we define the AFS
in Figure 2. Note that, by construction, any occurrence of c¢s can only be instantiated by the
input string during evaluation.

'1felse£(true,y, 2=y [for . € {string, state}]
ifelse,(false,y,2) — =z
get(>,[i],q) — ¢
get(a(zs), [i],q) — ifelsegring([i = 0],a(>),get(xs,[i —1],q)) [for all a € I]

inputtape(cs,[p]) — ifelsestring([p = 0],B(>),get(cs,[p—1],B(>)))

[
tape(cs, [n],[p]) — ifelsesiring([n = 0], inputtape(cs,[p]), tapex(cs, [n — 1], [p]))
tapex(cs, [n],[p]) — tapey(cs,[n],[p], transition(cs,[n],[p]))
tapey(cs, [TL], [p]7 action(q7 d, S)) - q tapey(c& [n]v [p]7 NA) - tape(cs, [TL], [p])
tapey(cs, [n], [p],end(s)) — tape(cs,[n],[p])

state(cs, [n],[p]) — ifelsegiate([n = 0], state0(cs, [p]), statex(cs, [n — 1],[p]))
stateO(cs, [p]) — ifelsegiate([p = 0], start,fail)
statex(cs, [n],[p]) — statey(transition(cs,[n],[p — 1]),transition(cs,[n],[p]),
transition(cs, [n],[p + 1]))
fail

statey(action(q,R,s),y,2) — s statey(NA,action(q,d,s),z) —
statey(action(q,L,s),y,2z) — fail statey(NA,NA, action(q,L,s)) — s
statey(end(s),y,z) — fail statey(NA,NA, action(q,R,s)) — fail
statey(NA, end(s),z) — s statey(NA,NA,end(s)) — fail
transition(cs, [n],[p]) — transitionhelp(state(cs,[n],[p]),tape(cs,[n],[p]))
transitionhelp(fail,q) — NA te d
transitionhelp(s,r(>>)) — action(w(>),d,t) [for all s == t € T
transitionhelp(s,q) — end(s) [for s € {accept,reject}]
decide(cs findanswer(cs, [P(|es|)], [P(|es])])

test(state(ces, [n], [p]), cs, [n], [p])
findanswer(cs, [n], [p — L

true

false

findanswer(cs, [n],
test(fail,cs, [n],
test(accept,cs, [n], [p

test(reject,cs, [n],

Ll b

Figure 2 Simulating a deterministic Turing Machine running in Az.P(z) time.
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Counting
The goal, then, is to find a representation of numbers and functionality to do four things:

calculate [P(|es|)] or an overestimation (as the machine cannot move from its final state);
test whether a “number” represents 0;

given [n], calculate [n — 1], provided n > 0—so it suffices to determine [max(n — 1,0)];

given [n], calculate [n+1], provided n+1 < P(|cs|) as necessarily transition(cs, [n], [p])
—x NA when n < p and n never increases—so it suffices to determine [min(n+1, P(|es|))].

Moreover, these calculations all occur in the right-hand side of a rule containing the initial
input list ¢s on the left, which they can therefore use (for instance to recompute P(|cs|)).
Rather than representing a number by a single term, we will use tuples of terms (which are
not terms themselves, as a pairing constructor would conflict with cons-freeness). To illustrate
this, suppose we represent each number n by a pair (n1,n3). Then the predecessor and
successor function must also be split, e.g. pred!(cs,n1,n2) —>% n} and pred?(cs,ny,n2) =%
nf for (n}, n,) some tuple representing n — 1. Thus, for instance the first test rule becomes:

teSt(failv CSs, Ny, n27p17p2) - findanswer(cs, ni,ng, predl(cs7p17p2)7 pred2(cs,p1,p2))

Following Jones [14], we use the notion of a counting module which provides an AFS with
a representation of a counting function and a means of computing. Counting modules can
be composed, making it possible to count to greater numbers. Due to the laxity of term
rewriting, our constructions are technically quite different from those of [14].

» Definition 15 (Counting Module). Write F = C u D for the signature in Figure 2. For P a
function from N to N, a P-counting module of order k is a tuple C;; ::= (¢, %, R, A,{-)) s.t.:

0 is a sequence of types oy X -+ - X 0, where each o; has order at most k — 1;

Y is a ktP-order signature disjoint from JF, with designated symbols zero, : [stringxd] =
bool and, for 1 < ¢ < a with 0; = 71 = ... = 7, = ¢ symbols predfr,suc‘ ‘
[string x & x 7] = ¢ and seed’ : [string x 7] = K;

R is a set of cons-free rules f(£) — r with f € ¥, each £; € T(C,V) and r € T(C U X, V);
for every string cs < I'", the set Aos S {(s1,...,84) e T(CUX)? |- s, :0j for 1 < j < a};
for every string cs, {-)¢s is a surjective mapping from A.s to {0,..., P(|es|) — 1};
writing e.g. pred’ [5] : o; for the term Aj.pred’ (5, ), the following properties are satisfied:

(seedl[cs],...,seed?[cs]) € A.s and ((seedl[cs],...,seed?[cs]))es = P(les|) — 1
and for all (s1,...,8,) € Aes with {((s1,...,84))es = M

(2 3 T .
v, invy

(predl[cs,3],...,pred?|[cs,5]) and (sucl[es,5],...,suc?[cs,5]) and (invl[es, 5],...,
inv?[cs, §]) are all in A,

{(predl[cs,5],...,pred?[cs, §]))es = max(m —1,0)

{(suclles, 5],...,suct[cs, §]))es = min(m + 1, P(|cs|) — 1)

{(invi[es, 5], ..., inv%[cs, §]))es = P(lcs]) =1 —m

zeroy(cs, §) =% true iff m = 0 and zero,(cs, 5) —F, false iff m > 0

if each s; =% t; and (t1,...,tq) € Acs, then also ((t1,...,t4))cs = M.

It is not hard to see how we would use a P-counting module in the AFS of Figure 2; this
results in a k*"-order AFS for a k*"-order module. Note that this works even if some number
representations (i, ..., s,) are not in normal form: even if we reduce 5 to some tuple #, the
result of the zero test cannot change from true to false or vice versa. Since the algorithm
relies heavily on these tests, we may safely assume that terms representing numbers are
reduced in a lazy way—as we did in Section 3.2 for the arguments s and ¢ of main.
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» Lemma 16. There is a first-order (An.2"*1)-counting module.

Proof. Like in Section 3.2, we will represent a set of numbers—or rather, its encoding as a
bit-sequence—by a pair of terms. We let C, := (string X string, ¥, R, A,{-)), where:

A, contains all pairs (s, t) such that (a) all data terms ¢ such that s =% g or t =% ¢
are subterms of cs, and (b) for each ¢ < ¢s either s =% g or t =% ¢, but not both.
Writing ¢s = en(...(c1(r>))...), we let csp = >, ¢cs1 = ¢1(>) and so on. We let
U8yt))es = ZZN:O{ZN_i | s =% cs;}. That is, {(s,t))cs is the number represented by the
bit-sequence by ...by where b; = 1 iff s =% cs;, iff not t =% cs; (with by the least
significant digit).

3 consists of the defined symbols introduced in R, which we construct below.

As in Section 3.2, we use non-deterministic selection functions to construct (s,t):
either(z,y) — = either(z,y) — vy 1 - 1

The symbol L will be used for terms which do not reduce to any data (the L — 1 rule is
used to force L € D). For the remaining functions, we consider bitvector arithmetic. First,

2N+1 _ 1 corresponds to the bit-sequence where each b; = 1:
seedl(cs) — all(es,l) all(>,q) — either(>,q)
seed?(cs) — L all(a(xs),q) — all(zs,either(a(zs),q)) [for a € I]

Here, I = {a | a € I}. The inverse function is obtained by flipping the sequence’s bits:
invl(cs,s,t) — t invl(cs,s,t) — s

In order to define zero,, we must test the value of all bits in the sequence. This is done by
forcing an evaluation from s or ¢ to some data term. This test is constructed in such a way
that both true and false results necessarily reflect the state of s and ¢; any undesirable
non-deterministic choices lead to the evaluation getting stuck.

eqlen(>,>) — true eqlen(>,a(ys)) — false
[for a,b € I]

eqlen(a(zs),b(ys)) — eqlen(xs,ys) eqlen(a(zs),>) — false
bitset(zs,s,t) — test(eqlen(zs,s),eqlen(zs,t)) test(true,z) — true

test(z,true) — false

Then zero, simply tests whether the bit is unset for each sublist.

zeroe(xs,s,t) — zo(ws,s,t bitset(zs,s,t)) zo(xs,s,t,true) — false
zo(a(zs), s,t,false) — zeroe(xs,s,t) [foracl]  =zo(r,s,t,false) — true

For the predecessor function, note that the predecessor of a bit-sequence by ...b;_1510...0 is
bo...b;—101...1. We first define a helper function copy to copy by ...b;_1:

copy(zs,s,t,false) — maybeadd(xs,bitset(zs,s,t),copy(tl(zs),s,t, empty(xs)))

copy(zs, s, t,true) — L maybeadd(xs,true,q) — either(zs,q)
maybeadd(zs, false,q) — ¢
empty(>>) — true t1(>) —

empty(a(z)) — false [for a € I] tl(a(z)) — « [for aeI]

Then copy(2Smax(i—1,0): 5, &, [¢ = 0]) reduces to those xs; with 0 < j <4 where b; = 1, and
copy(TSmax(i—1,0), £, 8, [i = 0]) to those with b; = 0. This works because s and ¢ are each
other’s complement. To define pred, we first handle the zero case:

predi(cs,s,t) — pzi(cs,s,t,zeroe(cs,s,t)) [for i€ {1,2}]
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pzl(cs,s,t,true) — s pz!(cs,s,t,false) — pmain'(cs,s,t, bitset(cs,s,t))
pz?(cs,s,t,true) — t pz?(cs,s,t,false) — pmain®(cs,s,t, bitset(cs,s,t))
Then, pmain(xzsy,s,t, [by = 1]) flips the bits by,by—_1,... until an index is encountered

where b; = 1; this last bit is flipped, and the remaining bits copied. Formally:
pmain'(ws,s,t,true) — copy(tl(zs),s,t,empty(zs))
pmain?(ws,s,t,true) — either(ws,copy(tl(zs),t,s, empty(zs)))
pmain'(ws, s,t,false) — either(zs,pmain!(tl(zs),s,t,bitset(tl(xs),s,t)))
pmain®(zs, s,t,false) — pmain?(tl(zs),s,t,bitset(tl(ws),s,t))
Finally, we observe that t + 1 = N — ((N —z) — 1) and for z = N also min(x + 1,N) =
N — (max((N —z)—1,0)). Thus, we may define suc(b) as inv(pred(inv(z))). Taking pairing
into account and writing out the definition, this simplifies to:

suc!(cs,s,t) — pred?(cs,t,s) suc?(cs,s,t) — pred!(cs,t,s) <
Having Lemma 16 as a basis, we can define composite modules. Here, we give fewer
details than for Lemma 16 as the constructions use many of the same ideas.

» Lemma 17. If there exist a P-counting module Cr and a Q-counting module C,, both of
order at most k, then there is a (An.P(n) - Q(n))-counting module Cx., of order at most k.
Proof Sketch. Let C ::= ([o1 % --x0,], X, R™, A™,{-)") and C,, == ([71 x---x 1], X", R,
AP (HP). We will, essentially, represent the numbers i € {0,..., P(|es|) - Q(|es|]) — 1} by a
pair (i1,i2) with 0 < i; < P(|es|) and 0 <ig < Q(|es]), such that i =41 - Q(|cs|) + i2. This
is done by defining AT.? = {(u1,...,Uq,V1,...,0p) | (U1,...,uq) € AT, A (V1,...,0p) € AP},
and (@, )P = {(@))T, - Q(|es]) + {(¥))L,. The signature of defined symbols and rules of
Cr., are straightforwardly defined as well, extending those in C; and C,; for instance:

Zeron.,(CS, UL, ..., Uq, V1,...,V) — and(zeror(cs,ui,...,Uq),zero,(cs,vi,...,p))
and(true,z) — = and(false,y) — false “

» Lemma 18. If there is a P-counting module Cy of order k, then there is a ()\n.QP("))—
counting module Cp[r of order k + 1.

Proof Sketch. We represent every bitstring bp(|cs|)—1...4, as a function of type oy = ... =
0, = bool. The various functions are defined as bitvector operations. For example:

seedy(r(cs, k1, ..., ka) — true invpq(cs, Fy k1, ..o k) — not(F-ky---kq)

zeroy(cs, F) — zeroy(cs,seedl[cs], ..., seed[cs], F)
zero'piqy(cs, ki, ... ke, F)  —  ztesty(F - ky---kq,zeror(cs,ki,...  kq),cs,
kla“'akaaF)

ztesty[r(true, 2, cs, E, F) false

—

N
ztesty[y)(false, true,cs, E, F) — true
ztesty[y)(false, false,cs,k, F)) —

zerd'y[(cs, predl [cs, k],...,predi[cs,k],F) <
Note that, for instance, seedyrj[cs] is Ak ...kq.seedyr(cs, k1,...,kq): the additional
parameters k; should be seen as indexing the result of the function.

We obtain:
» Theorem 19. Any decision problem in E* TIME can be accepted by a k''-order AFS.

Proof. Following the construction in this section, it suffices if we can find a k*"-order counting
module counting up to expk(a - n) where n is the size of the input and a a fixed positive
integer. Lemma 16 gives a first-order An.2"T!-counting module, and by iteratively using
Lemma 17 we obtain An.(2"t1)% = An.24"+1) for any a. Iteratively applying Lemma 18 on
the result gives a k*'-order A\n.expk(a - (n + 1))-counting module. “«
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5 Finding normal forms

In the previous section we have seen that every function in EFTIME can be implemented by
a cons-free k*-order AFS. Towards a characterization result, we must therefore show the
converse: that every function implemented by a cons-free k™-order AFS is in E*TIME.
To achieve this goal, we will now give an algorithm that, on input any basic term in an
AFS of order k, will output its set of data normal forms in EFTIME in the size of the term.
A key idea is to associate terms of higher-order type to functions. We define:

[.] = P{s|seBAaks:i}) forreS (soa set of subsets of B)
[o=71] = []l! (so the set of functions from [o] to [r])

Intuitively, an element of [¢] represents a set of possible reducts of a term s : ¢, while
an element of [o = 7] represents the function defined by some Az.s : ¢ = 7. Since—
as induction on the structure of o shows—each [o] is finite, we can define the following
algorithm to find all normal forms of a given basic term. In the algorithm, we build functions
Confirmed®, Confirmed?, ..., each mapping statements f(Aq,...,A,) ~ ttoavaluein {T, L}.
Intuitively, Confirmedi[f(ff) ~ t] denotes whether, in step ¢ in the algorithm, we have
confirmed that f(si,...,s,) =% t, where each A; represents the corresponding s;.

» Algorithm 20.

Input: A basic term s = g(t1,...,tm)-

Output: The set of data normal forms of s. Note that this set may be empty.

Set B:= Bs. For all f:[o1 X xo0,]=1€D,all A € [o1],...,A, € [on], all t € [],
we let Confirmed®[f(Ay,...,A,) ~t] :== L. Now, for all such f, At and all i € N:

if Confirmed’[f(A) ~ t] = T, then Confirmed" "' [f(4) ~ t] := T;

otherwise, for all rules f(¢1,...,¢,) — r € R, for all substitutions v on domain
FV(f(€)\{€} (so on those variables occurring below constructors) such that Ly e A; for
all j with £; not a variable (A; is a set of terms since ¢;, a non-variable proper constructor
term, must have base type), let n be the function such that for each ¢; € V, n(¢;) = A;,
and test whether ¢ € NJFi(rv,n). If there are a rule and substitution where this test
succeeds, let Confirmed*[f(A) ~ ] := T, otherwise let Confirmed" ™[ f(A) ~ ¢] := L.

Here, NFi(s,n) is defined recursively for B-safe terms s and functions 7 mapping all variables
x: 0 in FV(s) to an element of [¢], as follows:

if s is a data term, then NJFi(s,n) := {s};

if s is a variable, then NF(s,n) := n(s);

if s = f(s1,...,8,) with f € D, then NFi(s,n) is the set of all t+ € B such that
Confirmed [ f(NF(s1,1), ..., NFi(sp,n)) ~ t] = T;

if s = u-v, then NF!(s,n) = NF!(u,n)(NFi(v,n));

if s =, Ax.t : 0 = 7 where z ¢ domain(n), then NF%(s,n) := the function mapping
A€ o] to NFi(t,nu [z := A]).

When Confirmed®™![f(A) ~ t] = Confirmed[f(A) ~ t] for all statements, the algorithm ends;
we let I:=i+ 1 and return {t € B | Confirmed’[g({t1},...,{tm}) ~ t] = T}.

As D, B and all [o;] are all finite, and the number of positions at which Confirmed® is T
increases in every step, the algorithm always terminates. The intention is that Confirmed’
reflects rewriting for basic terms. This result is stated formally in Theorem 22.
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» Example 21. Consider the palindrome AFS in Example 11, with starting term s = 1(0(t>)).
Then Bs; = {1(0(>)),0(>), >, true,false}. Then we have [bool] = {J, {true}, {false},
{true,false}} and [string] is the set containing all eight subsets of {1(0(>)),0(>>),>}.
Thus, there are 8 - 8 - 2 statements of the form palindrome(A, B) ~ ¢, 4 -4 -2 of the form
and(A4, B) ~ t and so on, totalling 432 statements to be considered in every step.

We consider one step, determining Confirmed' [chk, ({1(0(>))}, {0(>>), >}) ~ true]. There
are two viable combinations of a rule and a substitution: chk;(1(zs),0(ys)) — chky(xs,ys)
with substitution v = [zs := 0(>>),ys := >] and chky(1(zs),>) — true with v = [zs :=
0(>)]. Consider the first. As there are no functional variables, n is empty and we need to
determine whether true € NF'(chk; (0(>),>), &). This fails, because Confirmed®[¢] = L
for all statements £. However, the check for the second rule, true € NF!(true, J), succeeds.
Thus, we mark Confirmed’ [chk, ({1(0(>>))}, {0(>>),>}) ~ true] = T.

» Theorem 22. Let f: [ty X - X tp] = KED and s1 : t1,...,8n : tn,t : Kk be data terms.
Then Confirmed [f({s1},...,{sn}) ~ t] = T if and only if f(5) —% t.

Proof Sketch. Define a labeled variation of R:

— —

Riw = {fis1(£) — label;(r) | f(§) > reR nieN} U {fis1(&) — f:(Z) | feD nieN}

Here label; replaces each defined symbol f by a symbol f;. Then R, is infinite, and
f(8) =% tiff some f;(5) =%  t. Furthermore, —r,, is terminating (even if —x is not!) as
is provable using, e.g., the Computability Path Ordering [9]. Thus, —gr,,, is a well-founded
binary relation on the set of labeled terms, and we can hence perform induction.

Consider the arguments passed to Confirmed® in the recursive process: NF? is defined
using tests of the form Confirmed[f(NF(s1,7),...,NFi(sn,n))] = T, where each n(z) itself
has the form NF7(t,n'). To formally describe this, let an NF-substitution be recursively
defined as a mapping from some (possibly empty) set V' < V such that for each z : o € V there
are an NF-substitution § and a term s with - s : o such that n(z) = NF’(s, ) for some j.
For an N F-substitution 1 on domain V, we define 7(x) = z for z ¢ V, and (x) = label;(s)¢
for z € V with n(x) = NF7(s,(). Then the following two claims can be derived by mutual
induction on ¢ ordered with —x ., U > (all n; and ¢ are NF-substitutions):

Confirmed'[ f(NF7 (s1,m1), ..., NFin(s,,m,)) ~ t] = T if and only if
q := fi(labelj, (s1)71, ..., label;, (s,)7n) =%, &
te N‘Fl(ua C)(Nf]l (5177}1)7 e aNJT:Jn (Sna Wn)) Zf and Only lf

q := (label;(u)() - labelj, (s1)71 - - - label;, (sn)7n —%  t.

Since, if we refrain from stopping the process in step I, we have Confirmed? = Confirmed’™* =

Confirmed’™ = ..., the theorem follows because f(8) —% t iff some f;(5) -5t “

It remains to prove that Algorithm 20 runs sufficiently fast.

» Theorem 23. If (F,R) has order k, then Algorithm 20 runs in time O(exph(m -n)) for
some m.

Proof. Write N := |B|. As R and F are fixed, N is linear in the size of the only input,
s. We claim that if k,7 € N are such that ¢ has at most order k, and the longest sequence
01 = ... = 0, = 1 occurring in ¢ has length n + 1 <, then card([o]) < exp5™'(i* - N).
(Proof of claim.) Observe first that P(3) has cardinality 2/V. Proceed by induction on
the form of 0. Note that we can write ¢ in the form o1 = ... = 0, = ¢ with n < 7 and each
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o; having order at most k — 1 (as n = 0 when given a 0*-order type). We have:

card(for = ... = on = 1) = card((- - - ([[]I7rDylon2l . Iy = carg([o])eeadonD) earallonD

< 2N»card([on]])mcard([[crl]]) < 2N<exp)2C (sz)expg('LkN) (by IH)

k(:k n k/:k
= NPz (iT-N)" o gexpz (i ‘N'"+N)(by induction on k)

—exph™(n-i* N+ N) <expit'(i-i* - N) = exp™ (i** - N)
(because n-i" +1 < (n+1)-3" <i-i")

(End of proof of claim.)

Since, in a k*"-order AFS, all types occurring in type declarations have order at most
k — 1, there is some i (depending solely on F) such that all sets [o] in the algorithm have
cardinality < exph(i*~! - N). Writing a for the maximal arity in F, there are at most
ID| - exph(i*~1 - N)*. N < |D| - exph((i* ' -a+1) - N) distinct statements f(A) ~ ¢.

Writing m := i*"'.a+ 1 and X := |D| - exph(m - N), we thus find: the algorithm has
at most I < X + 2 steps, and in each step we consider at most X statements ¢ where
Confirmed’[¢] = L. For every applicable rule, there are at most (2V)? different substitutions
7, so we have to test a statement t € NF(rvy,n) at most X - (X + 2) - |R| - 22" times. The
exact cost of calculating NF(rv,n) is implementation-specific, but is certainly bounded by
some polynomial P(X) (which depends on the form of ). This leaves the total time cost of
the algorithm at O(X - (X + 1) -2*N . P(X)) = O(P’(exp(m - N))) for some polynomial P’
and constant m. As EFTIME is robust under taking polynomials, the result follows. <

» Theorem 24. Let k> 1. A set S < {0,1}" is in E* TIME iff there is an AFS of order k
that accepts S.

Proof. If S € EFTIME, Theorem 19 shows that it is accepted by an AFS of order k. Converse-
ly, if there is an AF'S of order k that accepts S, Theorem 23 shows that we can find whether
any basic term reduces to true in time O(exp§(m-n)) for some m, and thus S € E*TIME. «

» Remark. Observe that Theorem 24 concerns extensional rather than intensional behavior
of cons-free AFSs: a cons-free AFS may take arbitrarily many steps to reduce its input to
normal form, even if it accepts a set that a Turing machine may decide in a bounded number
of steps. However, Algorithm 20 can often find the possible results of an AFS faster than
evaluating the AFS would take, by avoiding duplicate calculations.

6 Changing the restrictions

In the presence of non-determinism, minor syntactical changes can make a large difference in
expressivity. We briefly consider two natural changes here.

6.1 Non-left-linearity

Recall that we imposed three restrictions: the rules in R must be constructor rules, left-
linear and cons-free. Dramatically, dropping the restriction on left-linearity allows us to
decide every Turing-decidable set using first-order systems. This is demonstrated by the
first-order AFS in Figure 3 which simulates an arbitrary Turing Machine on input alphabet
I =1{0,1}. Here, a tape g ... %0 -.. with the tape head at position 4 is represented by a
triple (w;_1::- - :@o, Xy, Tip1:-- - :Ty), where the “list constructor” :: is a defined symbol,
ensured by a rule which never fires. To split such a list into a head and tail, the AFS
non-deterministically generates a new head and tail, makes sure they are fully evaluated, and
uses a non-left-linear rule to test whether their combination corresponds to the original list.
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1t - t rnd — I translate(O(zs)) — 0 : translate(xs)

rmd — 0 rnd — B translate(1(zs)) — I : translate(xs)
translate(l>) — B:: translate(>)

rndtape(z) — > translate(>) — D

rndtape(z) — rnd :: rndtape(z) equal(zl,xzl) — true

start(cs) — run(startstate,>,B,translate(cs))

r/u d
shift(t, zl,w,yl,d) [for every transition s == t]
shiftq(s,zl, ¢, yl,d, rnd, rndtape(0), rndtape(I))
shifto(s, zl,c,yl,d,b,t) [for every b € {0, I,B}]
shifts(s,c:: al, z,t, equal(yl, z :: t))
shifts(s,t, 2, ¢ :: yl,equal(xl, z :: t))
run(s, zl, ¢, yl)

run(s,zl, r,yl

shift(s, zl,c,yl,d
shiftq(s,zl,c,yl,d,b,t,t
shifto(s,zl, ¢, yl,R, 2, t
shifto(s,zl, ¢, yl, L, 2, t
shifts(s,zl, ¢, yl, true

)
)
)
)
)
)

Ll bl

Figure 3 A first-order non-left-linear AFS that simulates a Turing machine

6.2 Product Types

Unlike AFSs, Jones’ minimal language in [14] employs a pairing constructor, essentially
admitting terms (s,t) : ¢ x k if - s: ¢ and + ¢ : k are data terms or themselves pairs. This is
not in conflict with the cons-freeness requirement due to type restrictions: it does not allow
construction of an arbitrarily large structure of fixed type. In our (non-deterministic) setting,
however, pairing is significantly more powerful. Following the ideas of Section 4, one can
count up to arbitrarily large numbers: for an input string z, (... (z1(>))) of length n,

the counting module Cy represents i € {0, ...,n} by a substring z;(... (z1(>))) : string;
given a (An.expf(n + 1))-counting module Cy, we let Cj1 represent a number b with
bit representation by ...bx (for N < exph(n + 1)) as the pair (s,t)—a term!—where s
reduces to representations of those bits set to 1, and ¢ to representations of bits set to 0.

Then for instance a number in {0, ..., 22" _ 1} is represented by a pair (s,t) : (string x

string) x (string x string), where s and ¢ themselves are not pairs; rather, they are both
terms reducing to a variety of different pairs. A membership test would take the form

elemy(k, (s,t)) — elemtest(equal,(k,s), equal, (k,t))
elemtest(true,x) — true elemtest(z,true) — false

with the rule for equal; having the form equal,((si,t1), (s2,t2)) — 7. That is, the rule
forces a partial evaluation. This is possible because a “false constructor” (i.e., a syntactic
structure that rules can match) is allowed to occur above non-data terms.

7 Future work

In this paper, we have considered the expressive power of cons-free term rewriting, and seen
that restricting data order results in characterizations of different classes. A natural direction
for future work is to consider further restrictions, either on rule formation, reduction strategy,
or both. Following Jones [14], we suspect that restricting to innermost evaluation will give
the hierarchy P € EXPTIME < EXP?TIME & ---. Furthermore, we conjecture that a
combination of higher-order rewriting and restrictions on rule formation, possibly together
with additions such as product types, may yield characterizations of a wide range of classes,
including non-deterministic classes like NP or very small classes like LOGTIME.
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A Proofs omitted from the main text
In Section 2 we claim that for constructor rewriting systems R the following holds:
If t g— s =% ¢ with ¢ a normal form, then ¢ —% ¢ as well.

This is used as justification to not consider rules with a S-redex (Ax.s) -t in the right-hand
side. We will obtain this result as an easy consequence of the labeled system employed for
the proofs in Section 5. Thus, in this appendix we will allow such rules until the claim is
proven in Lemma AG6.

A.1 Proofs of Section 3

To facilitate proving the properties on B-safety, we first extend the definition to be paramet-
rized over a set of proper constructor terms satisfying certain rules. In the following, we
assume that B is a set of data terms which is closed under > and contains all data terms
occurring in the right-hand side of a rule in R.

» Definition Al (B*X-safety). Let X be a set of proper constructor terms on disjoint variables,
which does not contain any variable occurring bound in s; then:

A) any subterm s <t e X is BX-safe;

(B) any term in B is BX-safe;

(C) any variable is BX-safe;
(D) if f e D and s4,...,s, are BX-safe, then f(si,...,s,) is BX-safe (if well-typed);
E) if s and ¢ are both BX-safe, then s - t is BX-safe (if well-typed);

F) if z € V and s is BX-safe, then \z.s is BX-safe.

It is easy to see that a term is B-safe iff it is BZ-safe. Note also that if we a-rename all
rules to make sure the same variables do not occur both bound and free, then the right-hand
side r of a cons-free rule f(F) — 1 is Bl -safe.

We have the following properties:

» Lemma A2. For all BX-safe terms s:

1. all subterms t of s are BX -safe;
2. if v is a substitution such that tvy is B-safe for allt € X U FV(s), then sy is B-safe.

Proof. All three properties follow by a simple induction on the form of s. Note that for the
second property, all variables in s are renamed to fresh ones beforehand, which therefore do
not occur anywhere in X or in the domain or range of ~.

property (1): For case (B) we note that B is closed under subterms; the other cases are
obvious.

property (2): Case (A) holds by property (1): s <t e X implies sy <y, which is B-safe
by assumption. Case (B) holds because all elements of B are closed, so sy = s € B. Case
(C) follows by assumption, and cases (D)—(E) by the induction hypothesis. <

We recall Lemma 10, the primary property of interest for B-safety:
» Lemma 10. If s is B-safe and s —x t, then t is B-safe.

Proof. By induction on the form of s. First suppose the reduction does not take place at
the root. Since s reduces, it cannot be a variable or data term, so it has one of three forms:
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s = f(s1,...,8,) with f € D and all s; are B-safe. Then the reduction takes place in
some s;, 80t = f(s1,...,85,...,8,) with s; »>x s}, so also s is B-safe by induction. This,
and B-safety of all other s;, gives B-safety of t.

s =u-v. Then either t = v’ - v with u —g «' (and therefore v’ is B-safe) or ¢ = u - v’
with v > v’ (and therefore v’ is B-safe). Either way, ¢ is the application of two B-safe
terms and therefore B-safe.

s = Az.u. In this case, the reduction must take place in the B-safe term u, so t = \z.u’
and v’ is B-safe as well by induction; B-safety of ¢ follows.

This leaves the base case, a reduction at the root. Here, there are two possibilities:

s = (Ar.w) -v and t = u[z := v]. By B-safety of s, also u and v are B-safe, so by
Lemma A2(2) the result ¢ is B-safe as well.

s = ly and ¢t = rvy for some rule £ — r € R and substitution v which maps ¢ to a
B-safe term. Writing ¢ = f (Z)7 we can assume that r is a-renamed to be B -safe, so by
Lemma A2(2) we obtain B-safety of t. “«

A.2 Proofs of Section 4

We move on to the results of Section 4.

» Lemma 17. If there exist a P-counting module Cr and a Q-counting module C,, both of
order at most k, then there is a An.P(n) - Q(n)-counting module Cx., of order at most k.

Proof. Let Cy i:= ([o1 %+ -x0,], X7, R™, A", ()™)and C,, ::= ([11 x---xTp],EP, R?, AP, {-)P).
We can safely assume that any symbol f which occurs in both ¥™ and ¥* has the same
type declaration in both, and is defined by the same rules in R™ and RP—if this is not the
case, we simply use a renaming. Thus, we are given two counting modules that have no
conflicts: combining the signatures and rules does not affect the reduction and interpretation
properties.

Let Crp= ([o1 X -+ X0g x T X - x 7], 2T UXP UL, R"URPUR, AT P {-)™P), where:

A™P = {(u1, ..., Ugy V1, 0p) | (U1, .., uq) €A™ A (V1,...,0p) € AP},

LUty ey U, U1y ey Op)YEP = (U1, ..oy ua) YT - Q(les]) + {(v1, ..., b)),
3 consists of the defined symbols introduced in R, which we construct below.

Intuitively, fixing cs and writing N := P(|es|) and M := Q(|cs]|), a number 7 in {0,..., N -
M — 1} can be seen as a unique pair (n,m) with 0 < n < N and 0 < m < M, such that
i =mn-m. Here, n is represented by a tuple (uq,...,u,) in the counting module C, and m
by a tuple (vi,...,v) in C,.

For the seed function, we observe that N-M —1 = (N—1)-M + (M —1), which corresponds
to the pair (N — 1, M — 1), which in turn translates to the tuple (seedl|[cs],...,seed%[cs],
seed}[cs], ..., seed}[cs]). This tuple is generated by the following rules:

seed’ ,(cs,Z) — seedi(cs,?) forl<i<a
seed’ ,(cs,Z) — seedi f(cs,Z) fora+1<i<a+b

Note the extra parameters 2: this we do because some o; may be a functional type, and all
functions have a sort as output type (as observed in the definition of counting modules).
The zero function requires both components to be 0:

2eroy.,(Cs, Uy, ..., Ug, V1,...,0) — and(zeror(cs,ui,...,Uq),zero,(cs,vy,...,0p))
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and(true,z) — «x and(false,y) — false

For inverses, note that N-M—(n-M+m)—1 = (N—m)-M—m—1= (N-m—1)-M+N—-m—1,
giving the pair (N —n — 1, M —m — 1), or (inv(n), inv(m)):

invi (€8, Uty ey Uay V1500, 00, 2) = AnVi(es,ur, ..., U, 2) for 1<i<a
invi (€8, Uty .oy Uay V15000, 00, 2)  — AV ?(es, v, ., U, 2) fora+1<z a+b

For the predecessor, (i,j) — 1 results in (¢,j — 1) if j > 0, otherwise in (i — 1, M — 1)):

pred;p(cs,ul,...,ua,vl,...,vb,i) — ptestir'p(zerop(cs,vl,.. Vp), CS, UL, - -, Ug,
Viy.oo,tp, 2) forl<i<a+d
ptestjr.p(false,cs,ﬁ, ,2) —> w;-Z forl<i<a
ptestfr,p(false,cs, ,0,2) — predz_“(cs,vl, .oy, Z) fora + 1<i<a+bd
ptest;_p(true, s, U, 7,7) — pred.(cs,ui,...,uq, %) forl<i<a
ptest; ,(true,cs,@,v,2) — seed; '(cs,v1,..., v, %) fora+ 1 <i<a+b

Note the use of v; - 2% this rule can be read as ptestﬁr_p[false, s, U, V] »ru; if 1 <i<a
(modulo a-equivalence).

For the successor, (i,7) + 1 results in (i,7 + 1) if j < M — 1, and in (i + 1,0) otherwise.
The former holds exactly if inv(j) is non-zero, and 0 is exactly inv(seed(cs)).

suct. p(es Uty U, 1, 0, Z)  —  suctestl (zerop(cs, invé[cs, T]yeney invg[cs, 7)),
UlyeonyUgy V1, ., 0p,2) for1<i<a+b
suctest) ,(false,cs,4,v,7) — wu;-Z forl<i<a
suctest). ,(false,cs,4,v,7) — suc, “(cs,v1,...,0p,2) fora+1<i<a+b
suctest). ,(true,cs, i, v,Z) — sucy(cs,ui,...,uq, %) for1<i<a
suctest) ,(true,cs,,v,Z) — mnulf'(cs,?) fora+1<i<a+b
nulf(cs,2) — invl(cs,seed}[l],...,seed}[l],Z) for 1 <i<b

» Lemma 18. If there is a P-counting module Cy. of order k, then there is a An.2F (") -counting
module Cyx) of order k + 1.

Proof. Assume given a P-counting module C,; = ([01 X - X 0g], 2, R, A, {-)™). We deﬁne
the 27-counting module Gy, as the tuple ([01 = ... = 0, = bool], £PI™), RPI™] B (.y»lr]
where:

B.s is the set of all terms ¢ € T(XPl™) U C, &) of type 01 = ... = 0, = bool such that:

for all (s1,...,84) € Aes: q- 81+ 8q reduces to either true or false, but not to both;
for all (s1,...,54), (t1,...,ta) € Aes: if {(3))T, = {(£))7,, then q-s1 --- 5, and q-t1 - - - t4
reduce to the same boolean value.

Writing N := P(|es|) — 1, let <q>p[7r] ZiO{QN_i | ¢-s1---5q4 —F true for some
(81,...,84) with {(s1,...,84))" = i}; that is, ¢ represents the number given by the
bitvector bg...by (with by the least significant digit) where b; = 1 if and only if
q - [i] =%y true for some representation [7] of 7 in the counting module Cr (note that,
by the requirement on B., this therefore holds for any representation of 7).

YPI7l — 3 U % and RPITl = R U R/, where Y/ consists of the defined symbols introduced
in R', which we construct below.
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To start, seed|cs] should return a bitvector that is 1 at all bits, so having seed[cs] =%,

M.true would suffice. By definition of the f[5] construction, that is:

seedp((cs, k1,...,ka) — true

The inverse of a bitvector is obtained by flipping all the bits, as we saw n Lemma 16. Thus:

invpr(cs, Fy ki, - ka)

— not(F ki kq)

For the zero function, we simply test whether all bits are set to O:

zerogs(cs, F) —

zero'piq(cs, ki,... ke, F)  —
ztesty[y(true, 2, cs, E, F) —
ztesty[r)(false, true, cs, E, F) —

!

ztesty[,(false, false, cs, k, F')

p[~

For the predecessor function, we observe as before that zg...x;10...0 has xy...x;01...1
as a predecessor; that is, we must flip all the bits until we encounter a 1, flip that one too,
and leave the function unmodified for the rest. To this end, we first define what it means to
flip a bit: we want £1ip[F, k] to be the function that maps Z to F - Z if (k)™ # ()™ and to

not(true) — false
not(false) — true
zero' 4 (cs, seedl[cs],...,seed?[cs], F)
ztesty (L - ki -+ - ko, zeror(cs, k1, . ..
ki,...,ka, F)
false
true

zero' . (cs, pred! [cs, E], ...,pred?[cs, E], F)

not(F - 2) otherwise. For this, of course, we will need to define an equality check as well.

7Za)
flipchecky (F,21,...,24,false)

£1ip iy (cs, F ki, kg, 21, ..

flipcheckp[w](F, 21y, Za,tTUE)

equal (cs,ki,..., kg 21,...,%

7—» a)
k, 2)
k,Z)
k, 2)

eqtest_(true,b,cs,

eqtest_(false, true,cs,
eqtest_(false,false,cs,

Ll bbbl

flipcheck, . (F, 7, equal (cs, k, 7))
Fozi- 2,

not(F -2y 24)

eqtest_(zero,(cs, k), zerox(cs, Z), cs,
b

false

pred![cs, 7], ...

This, we use to define our predecessor function.

pred,(cs, I, Z)

pred’ . (cs, ki, ... ko, I\ 2)
predtest, (true, b, cs, E, F,Z)
predtestp[ﬂ] (false, true,cs, E, F,2)

predtest, (false, false,cs, k F, Z)

p[m

Note the way not is used in the second-last rule: this is the case where we continue flipping
bits until by is reached, and by itself is 0; that is, the number represented by F is 0. As the
pred-function iteratively updates the functional argument, this argument will return true

—
—

!

!

!

k

A

equal_(cs,pred!|cs, K],... ,pred?|cs, k),
pred[es, 7)

pred’ . (cs, seedl[cs],...,seed?[cs], F, ?)

predtest ;. (F - ki - kq,zeror(cs, k), cs, k,

flipp[n-] [CS, F, E]a E)

—

z

F.
not(F - 2)

v ka),cs

?)
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pred’ - (cs, pred! [cs, K, ... ,pred?|cs, K], F,Z)

at all positions by the time this last bit is reached. That is why not is applied.

Finally, the successor function is obtained by combining inv and pred as in Lemma 16.

sucp[r(cs, F, Z) — invyq(cs, predy

7]

[cs, invya[es, F], Z)

FSCD 2016
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A.3 Proofs of Section 5

In Section 5, we must prove correctness of the algorithm (Theorem 22). This proof takes
several large steps. To start, we introduce a terminating counterpart to R.

» Definition A3 (Labeled System). Let Fiap := F U {f; :a | f: a € D Aaie N} For
seT(F,V) and i € N, let label;(s) be s with all instances of a defined symbol f replaced by
fi. For t € T(Fian, V), let |t| be ¢ with all symbols f; replaced by f. Then, let

Riab = {f($17--~7l'n)_’fi(xh.-.,a?n)|f3[0'1><"'><0'»,L]3L€'D/\Z.EN} Y
{fi_;,_l(dil,...,iﬁn)—>fi(.I‘1,...,IIJ”)|f:[O'1X"'XO'7L]3L€D/\Z.€N}U

—

{fix1(61,...,0,) — labely(r) | f(£) > re R ~nieN}

Note that constructor terms are unaffected by label; and | -|. While the AFS (F1ap, R1ap)
is obviously non-deterministic and infinite in both its signature and rules, these issues do not

block us from using it as a reasoning tool. Importantly, this AFS defines the same decision
function as (F,R):

» Lemma A4. For all f: [0y X -+ X 0,] = 1 € D and data terms s1,...,Sp,t:

f(s1,...,80) =R tif and only if f(s1,...,sn) =%t
Proof. For the if direction, note that:

if y'l(2) = |y(2)| for all z, then |uy| = |uly!"! for all u € T(Fiap, V);

therefore, if u = £y and v = rv for £ — r € Ry, then either |[u| = [(]5I'| = |r|yI'1 = |v]
(for the first two groups of rules, where |[¢| = |r|), or |u| = |[(|yI'T =% |r|yI = |ul;
therefore, if u —x ., v either |u| > |v| or |u] = |v].

The first and third observations follow by a straightforward induction on u, the second by
definition of Riap and |- |. The if statement now follows straightforwardly by induction on
the length of the derivation f(5) —% .

For the only if direction, proceed as follows. For any substitution « and ¢ € N, let ; be
the substitution mapping each x to label;(y(z)). We observe:

for all s, v, 4: label;(sy) = label;(s)y; (by structural induction on s);
for all s,4: label;;1(s) =%  label;(s) (by structural induction on s);

— —

therefore, if u = f({)y and v = ry with f(¢) — r € R, then label;11(u) =
label; 11 (€)yit1 =%, fir1(D)y; >, label;(r)y; = label;(v);

therefore, if w —x v, then label;;(u) =% label;(v) (by structural induction on w);
thus, if f(5) =% t in k steps, then f(5) —r,,, fr(5) =%, labelo(t) =t (as there are no
defined symbols in t). <

What is more, as promised, —%,., is terminating (even though —% might not be).
» Lemma Ab. There is no infinite —>;"%m reduction.

Proof. This follows because we can orient all rules by the Computability Path Ordering
(CPO) [9]. Here, we use only the first definition, without accessibility (Section 3.3), with the
following precedence:

for f,gGD,i,jEN: fz > Fiap gj if 4 >j;
for feD,geC,ieN: f>r, fi>Fr. 9
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This precedence is obviously well-founded, as there is no infinite decreasing sequence of
numbers in N. We employ an order on types which obeys the requirements and equates all
sorts (such an order can easily be constructed for any given set of sorts).

Observe:

1. If se T(C,V) and s> t, then s >, t.
Here, >, is the type-sensitive part of the ordering, so s : 0 >t : 0 and o is greater or equal
in the type ordering then 7. As we have assumed that all sorts have a type declaration
[t1 X -+ X 1] = & with k and all ¢; in S, the above observation follows immediately by
case (1le) and structural induction on s.

Recall that CPO employs a (finite) set of variables X for bookkeeping related to variables
encountered in (above the right-hand side of) the current constraint to be satisfied. Keeping
with standard notation for CPO [9] we write s > ¢ for the ordering below. Observe that
each rule in R,y is oriented: the rules with an unlabeled left-hand side because f >z, fi
for all f,4, the “decreasing” rules f;11(Z) — f;(Z) because each f;11 > 7., fi, and as for the
other rules, we see by induction that if r is a renaming of a subterm of the right-hand side

= = —

of arule f(£) - reR and FV(r)\FV(f(¢)) < X and only variables not occurring in f(¥¢)

have been renamed, then f;,1(¢) >% label;(r):

—

if r is a variable in X, then f;11(¢) >* r = label;(r) by case (la);

if r is a variable not in X, then it occurs in some ¢;, so ¢; >, r = label;(r) by observation
(1), giving fi41(0) =% label;(r) by case (1e).

if r =g(ry,...,r,) with g € D, then label;(r) = g;(label;(r1), ..., label;(r,)), and by the

—

induction hypothesis f;+1(¢) > label;(r;) for all j; we complete by case (1c) because
Jit1 > Fi 935

if r = g(r1,...,7m,) with g € C, then label;(r) = g(label;(r1), ..., label;(r,)), and by the
induction hypothesis fi+1(€_> >X label;(r;) for all j; we complete once more by case (1c)
because fiy1 >, 9

if r = r1 - ro, then fi+1(€_') >%X label;(71), label;(ry) by the induction hypothesis, so
fiz1 () =X label;(r1) - label;(r3) = label;(ry - r5) by case (1c).

if = Az.r’, then for a fresh variable y, FV(r'[z := y]) = FV(r) u {y}; the induction
hypothesis gives f;41(0) >X“1} label;(r'[z := y]) = label;(+')[z := y], so we obtain
fir1(0) =% label;(r) by case (1d).

X

—

In particular, we thus have f;1(¢) >, label;(r) for r the right-hand side of the rule. With
all rules oriented, we obtain well-foundedness of —x,, by [9, Lemma 6.3 (monotonicity),
Lemma 6.6(1) (stability) and Theorem 6.27 (well-foundedness)]. “

Note that, while we did use Lemma 12 to obtain that functional variables may only occur
as direct arguments of the root, the proof otherwise does not rely on cons-freeness.
Before turning our attention to Theorem 22, we derive one ancillary lemma:

» Lemma A6. Let s = (Az.u) - vg-v1---v, withn =0 and t € DA. Then s —>;"a1ab t iff

ulz =] w1 v, —F

Proof. For the only if direction, we obtain s —g,, u[z = vo] - v1 v, =% t. For

the if direction, suppose s —% t. As t € DA does not contain applications, the reduction

must eventually contract a redex at the root; we have s =%  (Az.u') - vy - vy ---v), —p
lab

/ IR [ AR * ; * / ) * / . f
u'lz = vyl vy, —% f, with u =% ' and each v; —% v But as —g,, is
a rewriting relation, and therefore both monotonic and stable under substitution, also

ulz:=wol - vrervn =g, u'le = ol vy v, ot )
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Note that Lemma A6 immediately implies that t 3 — s —% ¢ with ¢ € A implies t —% ¢
as well. Therefore, as announced in the introduction, we will from now on assume that the
rules in R do not contain any S-redexes, as reducing these immediately does not change the
many-step reduction relation to data which we are interested in.

As announced in the proof sketch, we will use an auxiliary definition; the NJF-substitution:

» Definition A7. For V < V, a partial function 7 on domain V is an NF-substitution of
depth k > 0 if k is the smallest number such that: for all z : ¢ € V there exist some i, s, (
such that - s : o and n(x) = NFi(s, () and ¢ is an NF-substitution of depth m < k. Note
that the empty mapping [] is an N F-substitution of depth 0.

For an AV F-substitution 7 on domain V, let 77 be defined by induction on the depth of n:

for x ¢ V, 7j(z) = x;
for z € V we can write n(z) = NF(s,¢) with depth(¢) < depth(n); let 7j(z) = label;(s)(.

Now we are ready to prove Theorem 22:

» Theorem 22. Let f:[t1 X - X tp]| = KED and s1 : t1,...,8n : tn,t : K be data terms.
Then Confirmed [f({s1},...,{sn}) ~ t] = T iff f(5) =% t.

Proof. Extending the definition of Confirmed® and NF" also for i > I — simply by observing
that, if the recursive process were continued, we obtain Confirmed! = Confirmed!*! = ... -
we will derive the following two statements for all relevant i,fe N,feD,u,5e T(F,V),teB
and NF-substitutions ¢, 7:

(A) Confirmed [f(NF (s1,m1), .., NFin(sn,mn)) ~ t] = T if and only if
q := fi(label;, (s1)71, ..., label;, (sn)7n) _’?21“ t;
(B) t e NFi(u, Q) (NFI(s1,m), ..., NFin(sn,m,)) if and only if

q := (label;(u)() - label;, (s1)71 - - - label;, (sn)7, =% t-
If we can prove (A), we obtain the theorem by Lemma A4:

if Confirmed”[f(5) ~ t] = T, we can write this as

Confirmed” [ f(NF(s1,[]),- .-, NF°(s,,[])) ~ t] = T, which gives

f(labelg(s1), ..., labelo(sn)) =%, t, 80 f(s1,...,8,) =% t by Lemma A4;

if f(5) =% t, then by Lemma A4 there is some 7 with

fi(label;(s1), ..., label;(s,)) —% t; then by (A) we obtain

Confirmed‘[ f(NF(s1,[]), ..., NFi(sn,[])) ~ t] = T, which (because all s5; € DA) implies
Confirmed‘[f({s1},...,{sn}) ~ t] = T. If i < I then the same holds for I since
Confirmed®[C] = T implies Confirmed®™[C] = T, and if ¢ > I this follows because
Confirmed” = Confirmed’™ = . ...

We will prove statements (A) and (B) together by a mutual induction on ¢, oriented with
—Rys YD, Which is terminating because —x,,, is terminating and monotonic.

(A), only if case. Suppose Confirmed‘[f(Ay,...,A,) ~t] = T, where Ay = NF7* (sp, 1)
for 1 < k < n. If this holds, then necessarily 7 > 0; there are two possibilities.

Confirmed ™ '[ f (A) ~ t] = T. The induction hypothesis immediately yields:

fi(labelj, (s1)71, . . ., label;, (s,)7n)
S Riw fi,1(|abe|j1 (Sl)m, ceey Iabeljn (Sn)n?)

£
Raw b
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There are a rule f(£) — r € R and substitution v on domain FV(f(£))\{¢} such that
lxy € Ay, for all non-variable ¢, and t € NF=1(rv,€), where £ is the function mapping
each variable £}, to Ay = NF7* (s, mi) — also an NF-substitution.

Now, for all non-variable £, we use the > part of the induction hypothesis (B) to obtain
labelj, (s1)Tk =%, Cky € B. Let 6 := v U [{y := labelj, (si)7k | £x € V]. Then we have:

fi(labeljl (Sl)ﬁ, cey Iabeljn (Sn)m)

_>;<31ab fi(glv [P ,En)é

P Riw Iabeli,l(r)é

= label;_1 () [€ := label;, (si)7 | £k € V]
= Iabeli_l(r'y)g

Since at least one step is done and t € NF~!(rv,£), we can use the —g,, part of the
induction hypothesis of (B) to derive that label;_1(ry)§ =%  t.

(A), if case. Suppose q = f;(label;, (s1)71, - . ., label;, (sn)7n) —%,  t. Since t cannot be
rooted by f;, the reduction must eventually take a root step. There are two possibilities.

A lowering rule: ¢ —>;"3m filmy, oo xn)y 2R fic1(T1, .. Tn)Y _’*Rlab t. Then

q = fi(labeljl (51)77717 ey labeljn <5n)n7>
7 Ria fi—l(labeljl (sl)mv s |abe|jn($n)m)

=R fic1(Z)y =Rt

By the induction hypothesis, Confirmed ™' [ f(NF7* (s1,m1), ..., NFi"(sp,m)) ~ t] = T,
so by definition the same holds for Confirmed'[...].

A rule obtained from R: ¢ =%  fi(17, ..., lny) >Ry, labeli1(r)y =%t for f() —
r € R, where each labelj, (si)7x =% kY. Now, let LV :={k | ke {1,...,n} Al € V}.
Let ¢ := [y := label;, (sx)7k | k€ LV], and +' := [z := vy(z) | ¢ domain(d)]. Then:

d and 7' have disjoint domains, and domain(d) U domain(y’) = domain(vy);

~" maps to elements of B, and each ¢,y € B for k ¢ LV;

each (6 uY')(2) -k, 7(@);

for ke {1,...,n}\LV: label;, (sx)x =% lxy = ' € B;

hence, by the induction hypothesis, £, € NF*(sp,n) for ke {1,...,n}\LV;

q =% Fi(0)(6 L) —>ry, labeli_y (r)(6 U4 —% labeli_1(r)y =% &
label;_1 (r)(§ U +') = label;_1(ry')d since v’ maps to data terms;

§ =X, where x = [lx, := NFI*(sg,mi) | k€ LV];

thus, by the induction hypothesis, label;_ (ry')x —% t implies t € NF* "1 (ry/, x);
this gives Confirmed'[f(NF (s1,m1), ..., NFi(s,,m,)) ~ t] = T.

(B), both cases. We prove (B) by two additional induction hypotheses; the second on the
depth of &, the third on the size of u. Consider the form of w.

If u = f(u1,...,un), then u has base type, so n = 0 and t € NF'(u,§) if and only if
Confirmed [ f(NFi(u1,€), ..., NFi(um,€)) ~ t] = T. As we have just seen, this is the
case iff ¢ = label;(u)€ = fi(label;(u1)E, ..., label;(um)E) =% ¢

If u € V, then since domain(¢) 2 FV (u) we can write £(u) = NF? (u/, '), and have

Nfi(q, &) (NF# (81.’771)’ o NFIn (sn,nn))
= NF (', &) NF* (s1,m),5 -+ -, NFI™ (85, 1n))

FSCD 2016
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Also,

(1abel;(w)€) - (labely, (s1)777) - - (label;, (s,,)77)
— E(u) - (1abel, (s1)7) - - (label;, (s,)777)
= (labely (u')E") - (label;, (s1)7) - - (labely, (5., )777)

Noting that ¢’ has a smaller depth than ¢, we complete by the second induction hypothesis.

If u=v-w, then

N (1, €)NF (s1,m), - NFI (5, 7))
= NF (0, ) NF (w0, €), NF (51,1, ., NI (3, 1m0))

Additionally,

(label; ()€) - (label;, (s1)71) - - (label;, (s, )77)
= (label; (v)¢) - (label;(w)¢) - (labelj, (s1)71) - - - (label;, (s,)7)

We complete by the third induction hypothesis.
Finally, if u = Az.v/, then n > 0 by type restrictions. Then

Nfi(u7§)(ijl(517771)7'_"aN‘an(snanfl)) )
= NF' (v, U [z := NF'(s1,m)])(NF2(s2,m2), - . ., NFI" (S, 1))

Now, assuming z to be fresh (which we can safely do by a-conversion), § := £ U [z :=
NFI1(s1,m)] is an NF-substitution. We note that:

= (Az.(label;(u")€)) - (labelj, (s1)71) - - - (label;, (s0)7m)
—3 (Iabeli(ui)g[:r := label;, (s1,71)]) - (labelj, (s2)72) - - - (label;, (s,)7)

= (label;(u")d) - (labelj, (s2)73) - - - (label;, (sn)7)
=: ql

q = (label;(Az.u)€) - (label;j, (s1)71) - - - (Iabel;, (s,)7n)

As ¢ reduces to ¢/, we use the first induction hypothesis to obtain ¢ —% ¢ iff
Rlab

t e NFi(u, & U [z := NF(s1,m)])(NF?2(s2,m2), ..., NFI"(85,,m,)). This proves the

theorem since Lemma A6 gives us that ¢ —»% ¢ if and only if ¢’ —% ¢ R

Finally, we consider the proof of complexity. Again, we split this into several parts. To
start, we define a counter notion to order:

» Definition A8. The length bound of a type o is the length n + 1 of the longest sequence
01 = ... = 0, = ¢ occurring in it. Formally, lengthbound(cy = ... = o, = 1) =

max(n + 1, lengthbound(oy), . . ., lengthbound(oy,)).

» Lemma A9. If a type o has order k and length bound at most i, then card([o]) <
exphTL(i*+1 . N), where N is the number of elements in B.

Proof. By induction on the form of o; write 0 = 01 = ... = 0, = ¢ with 0 < n < i and
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each o; having order at most k — 1 and length bound at most 7. Then:

card([o;1 = ... = 0, = 1]) = card((--- ([¢Jlor])lon-aD. . )loa)
(--- (Card([[b]])card([[dn]]))Card(ﬂan_l]]) .. )card(ﬂgl]])
Card([[Lﬂ)Card(ﬂo'n]])”'card(ﬂalﬂ)

< Vel -ceralon]) (since [1] < P(B))
< N-expi (i N)-expi (i N) (by induction hypothesis)
_ 2N~exp’2°(ik~N)"

< 9exp5(i*-N-n+N) (by (*%))
= expy™(n-i* - N+ N)

< exphTHi-i* N) (asn-dF 4 1< (n+1)-iF <)

expy " (iFT - N)

(**) Here, we make an additional claim: N -exph(m-N)" < exp5(m-N-n+ N) for m,k > 1
and all X. This claim obviously holds if N = 0; for N > 0 we prove it by induction on k:

if k=1 then N - (2™ N)" = N .2mNm < gN. gm-Non — gN+m-Non,
if the claim is known for k, then N-exp5™!(m-N)" = N-exph (2™ V)" < exph (2™ N -n+N);
we are done if we can prove that 2™V . n + N < 2™V 7+N which holds because always:

2% . n < 2%X" when X > 1: if n = 0 both sides are 0, if n = 1 both sides are 2%, if

n = 2 and X = 1 the statement becomes 2n < 2" which indeed holds for n > 2, and if
n>2and X > 2 we obtain 2% . n < 2% .27 = 2X+n L 9Xn,
2X N <2X 42X . N =2% . (14 N) g 2% . 2N = 2X+N, «

Lemma A9 bounds the sizes of the sets iterated over in the algorithm. Preparations done,
consider the theorem:

» Theorem 23. If (F,R) has order k, then Algorithm 20 runs in time O(exph(m -n)) for
some m.

Proof. In the following, denote by “the set of types occurring in an AFS” (F,R) the set X
of all oq,...,0,,t such that some f : [0y X -+ x 0,,] = ¢ € F, and all their subtypes. We let:

a € N denote the maximal arity of symbols in F;

k € N denote the order of the AFS (F,R), so k — 1 the maximal type order in ¥;

i € N denote a length bound which bounds all ¢ in ¥;

d € N denote the maximal size (counting symbols, variables, applications and abstractions)
of right-hand sides in R.

All numbers above are fixed by the given AFS and should thus be considered constant (the
only input to the algorithm is s). We also define:

N := the number of elements in B (note that this number is linear in |s|);

X := exp5(i* - N), which bounds card(c) for all o € ¥ by Lemma A9;

Y :=|D|- X% N < |D| - expk((i* + a + 1) - N), which therefore bounds the number of
different statements f(A) ~ t considered in the algorithm;

Now, for every right-hand side r, we first make the following observation: every subterm of r
has a type which is a sort or in X. This follows because we have assumed right-hand sides to
be B-normalised, so all strict subterms are either the direct argument of some f € F or of an
application F' - ry ---r, with F' a variable which occurs as a direct argument in the left-hand
side. Thus, in particular, the binders of abstractions have a type of at most order k — 2.
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Consider the cost of calculating some NF(rv,n) if all y(z) are data terms (or variables)
and Confirmed® is already known; the exact cost depends on implementation details, so for
simplicity let Z denote a bound to the cost of:

performing a substitution 7’;

looking up a truth value in Confirmed® if A1, ..., A,,t are already calculated;
looking up an element in n;

calculating a function A(B), with A € [o = 7], B € [o] for some o, 7 € 3.

Induction on the size |r| of r shows that the cost of calculating NF*(rv,n) is bounded by
Z- X r:

if r =¢(...) with ce C, or r is a variable in domain(vy), this cost is at most Z;

if r is a variable in domain(n), this cost is at most Z;

if 7 = u-wv, we must calculate NF*(uy,n) and NF(vy,n), followed by a function
calculation, so this cost is at most

(Z- Xl m )+ (Z- X))+ Z2 < (Z- X e )+ (Z- X)) + (2 - XI712)
= (Z- Xy (jri] + [ra] + 1)
Z- X |

if r = f(r1,...,7n), then we must calculate NF®(r;v,n) for each subterm, so we obtain a
cost bounded by

(Ui Z- X + 22N < (00 20 X)) + (2 X711
= Z- X (lr]|+ .. ral + 1)
Z - X"l r|

if = Ax.r’, then there are fewer than X different NFi(r’, () to calculate, so the cost is
bounded by X - (Z- X"l . |r'|) < Z - XI"'IH1 |0 < Z - X7 ).

Even in a non-optimal implementation, we will have Z < ¢-Y? for some b, ¢, which suffices for
our purposes. This bounds the cost of determining a query ¢t € NFi(ry,n) by ¢-d-Y?. X4,

Observing that I <Y + 2, as the number of T-statements increases by at least 1 in every
step before I, we thus obtain:

there are at most Y + 2 steps;

in each step, we investigate at most Y claims;

for each claim, we consider |R| possible rules;

for each rule, we investigate at most (2V)% = 2%V substitutions ~;
for each investigation, we must test membership in some NF¢(rv,n).

The cost of the lookup to Confirmed’™ is negligible compared to the cost of investigating all
substitutions. Combining these costs and assuming N > 1, we obtain a bound of

(Y +2)- Y |R|-(2¢N +1)-c-d-Yb. X1
= (p|-x°- N+2)-|D|~X“-N~|R\-(2a‘N+1) -d-(|D]- X*-N)b. X1

< (2D X*-N)-|D|-X* N -[R|- (2*N*)-c-d- (D] - X** - N") - X
2. c- d |D|2+b ‘R| X2a+ab+d 2aN+1 N2+b
O(exp (k N)2a+ab+d 2aN+1 2N (2+b))

< Ofexph(i® - (Ba+ab+d+2)- N +2b+1))

O(expk(z - N +y)) for fixed numbers x and y

As N is linear in the size of the input, the result follows. <
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B An extended example of SAT-solving using cons-free rewriting

To see how the algorithm from Figure 1 works in practice, consider the formula (z1 v 22) A
(—x1 v =22 v —x3) A (22 v x3). This corresponds to the following string and term:

L = 117400042117 L= 1(1(7(#(0(0(0(#(?(1(1(#(>)))))))))))

We consider a successful reduction from decide(L) to true. For readability, we will omit the
brackets and >, and simply denote L as 117#0004#711 (and similar for its subterms).

decide(L)
—g assign(117#000#711, >, >, L)
—g assign(17#000#711, >, either(117#0004711,>), L)
—x assign(7#000#4711, either(1?74000#711,1>), either(1174#000#711,1>), L)
—x assign(#000#711, either(174#000#711,1>),
either (740004711, either(117#0004711,1>)), L)
—x main(either(17#000#711,1>), either(?#0004711, either(1174#000#711,1>)), L)

This derivation corresponds to choosing the assignment [z7 := L, 29 := T,23 := 1]. For
brevity, let us write Xy for either(1?7#000#711,>) and X3, for either(7#000#711,
either(117#000#711,1>)). Then X; —% 1740004711 and both X3; —% 7#000#711
and X3, —% 11740004711 using the either rules. Technically, both terms also reduce to
>, but we will not use this.

We continue:

main(Xo, X31, 117#000#7114#)
—R test(Xg, )(3’17 1?3‘?‘5000#5?:|.13'%7
eq(Xo, 117#000#711#), eq(Xs,1, 117#000#711#))
—%  test(Xo, Xg31, 17#0004711#, eq(...), eq(117#00047114#, 117400047114#))
—r  test(Xa, X31, 17400047114, eq(...), eq(17#00047114, 1740004 711#))
—r  test(Xa, X31, 17#0004#711#, eq(...), eq(?#00047114#, 740004 7114#))
—r  test(Xs, X31, 17#0004#711#, eq(...), eq(#0004#711#, #000#711#))
(X2, )
(X2,

AAAAA

X351, 17#000#711#, e .), true)
X3,1, 17400047114 )

—r  test(Xy

Q

—  main(Xs

That is, we tested the first variable of the first clause x; v z2 against our non-deterministically
chosen assignment, and concluded that it does not suffice (since z; is mapped to L, as
evidenced by X351 —% 117#0004711#). We continue with the next variable:

main(Xg, X371, 1?#000#?11#)

—R test(Xg, X371, 7HO0004# 7114,
eq( Xy, 174000#711#), eq(Xs,1, 174000#47114))

-k test(Xy, Xz1, 7#000#4711#, eq(1740004711#, 174000#27114), eq(...))
Xo, Xs1, 7#000#7114, eq(7#0004711#, 74#0004#7114), eq(...))
Xo, Xs1, 7#000#7114, eq(#00047114, #00047114), eq(...))
X2, X351, 7400047114, true, eq(...))
XQ, Xg’l, sklp('?#OOO#?ll#))
XQ, Xg’l, sk1p(#000#711#))
Xy, X3.1, 000#47114)

Thus, testing the second variable (x5) against our assignment succeeded, so the main function

49:29

FSCD 2016



49:30 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

moves on to the next clause.

main(Xg, X371, 000#?11#)
—R test(Xg, X371, 00#?11#, eq(Xg_’l,OOO#?ll#), eq(X2,000#711#))
—*  test(Xy, Xs1, 0047114, eq(11740004711#, 0004711#4), eq(...))
—r  test(Xa, X31, 00#711#, eq(17#000# 7114, 00#711#), eq(...))
—r  test(Xa, Xg1, 00#711#, eq(T#000#711#, 0#2114#), eq(...))
—r test(Xy, Xsi, 00#711#, eq(#00047114, #7114), eq(...))
—r  test(Xa, X3, 00#7114#, true, eq(...))
—R main(XQ, X371, sk1p(OO#711#))
—R main(XQ, X371, sk1p(O#711#))
—g main(Xy, X3 1, skip(#7114#))
—R main(Xg, X371, 711#)

The second clause was satisfied already by the valuation for 1, so the reduction has moved
towards the last clause. Note that here eq(117#000#4711#, 0004711#) reduces to true,
because what is compared is not the exact string, but rather the number of symbols before
the first #. From the current state, we quickly complete the derivation:

main(Xs, X371, 711#)

X31, 114#)

—r  main(X.

—g main X351, skip(1#))
X3,1, skip(#))

X3, >)

—r  test(Xao, X31, 1#, eq(Xa, 11#), eq(Xs1,11#))
—r  test(Xg, X31, 17, eq(17#000#711#, 114#), eq(...))
X eq(?#000# 2114, 14#), eq(...))
—r  test(Xg, X31, 17, eq(#000#?11#, #), eq(...))
—r  test(Xg, X31, 14, true, eq(...))
X
X

—R main

(
(
(
(
—r  test(
(
(
(
(
(

2,
2,
2,
2,
2, X31, 19,
2,
2,
2,
2,
2,

—  main(X.
—r  true
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