
Polymorphic Higher-order Termination
Łukasz Czajka
Faculty of Informatics, TU Dortmund, Germany
http://www.mimuw.edu.pl/~lukaszcz/
lukaszcz@mimuw.edu.pl

Cynthia Kop
Institute of Computer Science, Radboud University Nijmegen, Netherlands
https://www.cs.ru.nl/~cynthiakop/
c.kop@cs.ru.nl

Abstract
We generalise the termination method of higher-order polynomial interpretations to a setting with
impredicative polymorphism. Instead of using weakly monotonic functionals, we interpret terms in
a suitable extension of System Fω. This enables a direct interpretation of rewrite rules which make
essential use of impredicative polymorphism. In addition, our generalisation eases the applicability
of the method in the non-polymorphic setting by allowing for the encoding of inductive data types.
As an illustration of the potential of our method, we prove termination of a substantial fragment of
full intuitionistic second-order propositional logic with permutative conversions.

2012 ACM Subject Classification Theory of computation → Rewrite systems; Theory of computa-
tion → Equational logic and rewriting; Theory of computation → Type theory

Keywords and phrases termination, polymorphism, higher-order rewriting, permutative conversions

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.12

1 Introduction

Termination of higher-order term rewriting systems [20, Chapter 11] has been an active area of
research for several decades. One powerful method, introduced by v.d. Pol [22, 14], interprets
terms into weakly monotonic algebras. In later work [5, 11], these algebra interpretations are
specialised into higher-order polynomial interpretations, a generalisation of the popular – and
highly automatable – technique of polynomial interpretations for first-order term rewriting.

The methods of weakly monotonic algebras and polynomial interpretation are both limited
to monomorphic systems. In this paper, we will further generalise polynomial interpretations
to a higher-order formalism with full impredicative polymorphism. This goes beyond shallow
(rank-1, weak) polymorphism, where type quantifiers are effectively allowed only at the
top of a type: it would be relatively easy to extend the methods to a system with shallow
polymorphism since shallowly polymorphic rules can be seen as defining an infinite set of
monomorphic rules. While shallow polymorphism often suffices in functional programming
practice, there do exist interesting examples of rewrite systems which require higher-rank
impredicative polymorphism.

For instance, in recent extensions of Haskell one may define a type of heterogeneous lists.

List : ∗ foldlσ(f, a, nil) −→ a

nil : List foldlσ(f, a, consτ (x, l)) −→ foldlσ(f, fτax, l)
cons : ∀α.α→ List→ List
foldl : ∀β.(∀α.β → α→ β)→ β → List→ β

The above states that List is a type (∗), gives the types of its two constructors nil and cons,
and defines the corresponding fold-left function foldl. Each element of a heterogeneous list
may have a different type. In practice, one would constrain the type variable α with a type

© Łukasz Czajka and Cynthia Kop;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 12; pp. 12:1–12:45

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8083-4280
http://www.mimuw.edu.pl/~lukaszcz/
mailto:lukaszcz@mimuw.edu.pl
https://orcid.org/0000-0002-6337-2544
https://www.cs.ru.nl/~cynthiakop/
mailto:c.kop@cs.ru.nl
https://doi.org/10.4230/LIPIcs.FSCD.2019.12
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Polymorphic Higher-order Termination

class to guarantee the existence of some operations on list elements. The function argument
of foldl receives the element together with its type. The ∀-quantifier binds type variables:
a term of type ∀α.τ takes a type ρ as an argument and the result is a term of type τ [α := ρ].

Impredicativity of polymorphism means that the type itself may be substituted for its
own type variable, e.g., if f : ∀α.τ then f(∀α.τ) : τ [α := ∀α.τ]. Negative occurrences of
impredicative type quantifiers prevent a translation into an infinite set of simply typed rules
by instantiating the type variables. The above example is not directly reducible to shallow
polymorphism as used in the ML programming language.

Related work. The term rewriting literature has various examples of higher-order term
rewriting systems with some forms of polymorphism. To start, there are several studies that
consider shallow polymorphic rewriting (e.g., [8, 10, 24]), where (as in ML-like languages)
systems like foldl above cannot be handled. Other works consider extensions of the λΠ-
calculus [2, 3] or the calculus of constructions [1, 25] with rewriting rules; only the latter
includes full impredicative polymorphism. The termination techniques presented for these
systems are mostly syntactic (e.g., a recursive path ordering [10, 25], or general schema [1]),
as opposed to our more semantic method based on interpretations. An exception is [3], which
defines interpretations into Π-algebras; this technique bears some similarity to ours, although
the methodologies are quite different. A categorical definition for a general polymorphic
rewriting framework is presented in [4], but no termination methods are considered for it.

Our approach. The technique we develop in this paper operates on Polymorphic Functional
Systems (PFSs), a form of higher-order term rewriting systems with full impredicative
polymorphism (Section 3), that various systems of interest can be encoded into (including the
example of heterogeneous fold above). Then, our methodology follows a standard procedure:

we define a well-ordered set (I,�,�) (Section 4);
we provide a general methodology to map each PFS term s to a natural number JsK,
parameterised by a core interpretation for each function symbol (Section 5);
we present a number of lemmas to make it easy to prove that s � t or s � t whenever s
reduces to t (Section 6).

Due to the additional complications of full polymorphism, we have elected to only generalise
higher-order polynomial interpretations, and not v.d. Pol’s weakly monotonic algebras.
That is, terms of base type are always interpreted to natural numbers and all functions are
interpreted to combinations of addition and multiplication.

We will use the system of heterogeneous fold above as a running example to demonstrate
our method. However, termination of this system can be shown in other ways (e.g., an enco-
ding in System F). Hence, we will also study a more complex example in Section 7: termination
of a substantial fragment of IPC2, i.e., full intuitionistic second-order propositional logic
with permutative conversions. Permutative conversions [21, Chapter 6] are used in proof
theory to obtain “good” normal forms of natural deduction proofs, which satisfy e.g. the
subformula property. Termination proofs for systems with permutative conversions are
notoriously tedious and difficult, with some incorrect claims in the literature and no uniform
methodology. It is our goal to make such termination proofs substantially easier in the future.

This is a pre-publication copy of a paper at FSCD 2019. In particular, it contains an
appendix with complete proofs for the results in this paper.

2 Preliminaries

In this section we recall the definition of System Fω (see e.g. [16, Section 11.7]), which
will form a basis both of our interpretations and of a general syntactic framework for the

Ł. Czajka and C. Kop 12:3

investigated systems. In comparison to System F, System Fω includes type constructors
which results in a more uniform treatment. We assume familiarity with core notions of
lambda calculi such as substitution and α-conversion.

I Definition 2.1. Kinds are defined inductively: ∗ is a kind, and if κ1, κ2 are kinds then
so is κ1 ⇒ κ2. We assume an infinite set Vκ of type constructor variables of each kind κ.
Variables of kind ∗ are type variables. We assume a fixed set ΣTκ of type constructor symbols
paired with a kind κ, denoted c : κ. We define the set Tκ of type constructors of kind κ by
the following grammar. Type constructors of kind ∗ are types.

T∗ ::= V∗ | ΣT∗ | Tκ⇒∗Tκ | ∀VκT∗ | T∗ → T∗
Tκ1⇒κ2 ::= Vκ1⇒κ2 | ΣTκ1⇒κ2

| Tκ⇒(κ1⇒κ2)Tκ | λVκ1Tκ2

We use the standard notations ∀α.τ and λα.τ . When α is of kind κ then we use the
notation ∀α : κ.τ . If not indicated otherwise, we assume α to be a type variable. We treat
type constructors up to α-conversion.

I Example 2.2. If ΣT
∗ = {List} and ΣT

∗⇒∗⇒∗ = {Pair}, types are for instance List
and ∀α.Pairα List. The expression Pair List is a type constructor, but not a type. If
ΣT(∗⇒∗)⇒∗ = {∃} and σ ∈ T∗⇒∗, then both ∃(σ) and ∃(λα.σα) are types.

The compatible closure of the rule (λα.ϕ)ψ → ϕ[α := ψ] defines β-reduction on type
constructors. As type constructors are (essentially) simply-typed lambda-terms, their β-
reduction terminates and is confluent; hence every type constructor τ has a unique β-normal
form nfβ(τ). A type atom is a type in β-normal form which is neither an arrow τ1 → τ2 nor
a quantification ∀α.τ .

We define FTV(ϕ) – the set of free type constructor variables of the type constructor ϕ –
in an obvious way by induction on ϕ. A type constructor ϕ is closed if FTV(ϕ) = ∅.

We assume a fixed type symbol χ∗ ∈ ΣT∗ . For κ = κ1 ⇒ κ2 we define χκ = λα : κ1.χκ2 .

I Definition 2.3. We assume given an infinite set V of variables, each paired with a type,
denoted x : τ . We assume given a fixed set Σ of function symbols, each paired with a closed
type, denoted f : τ . Every variable x and every function symbol f occurs only with one type
declaration.

The set of preterms consists of all expressions s such that s : σ can be inferred for some
type σ by the following clauses:

x : σ for (x : σ) ∈ V.
f : σ for all (f : σ) ∈ Σ.
λx : σ.s : σ → τ if (x : σ) ∈ V and s : τ .
(Λα : κ.s) : (∀α : κ.σ) if s : σ and α does not occur free in the type of a free variable of s.
s · t : τ if s : σ → τ and t : σ
s ∗ τ : σ[α := τ] if s : ∀α : κ.σ and τ is a type constructor of kind κ,
s : τ if s : τ ′ and τ =β τ

′.
The set of free variables of a preterm t, denoted FV(t), is defined in the expected way.
Analogously, we define the set FTV(t) of type constructor variables occurring free in t. If α
is a type then we use the notation Λα.t. We denote an occurrence of a variable x of type τ
by xτ , e.g. λx : τ → σ.xτ→σyτ . When clear or irrelevant, we omit the type annotations,
denoting the above term by λx.xy. Type substitution is defined in the expected way except
that it needs to change the types of variables. Formally, a type substitution changes the
types associated to variables in V . We define the equivalence relation ≡ by: s ≡ t iff s and t
are identical modulo β-conversion in types.

FSCD 2019

12:4 Polymorphic Higher-order Termination

Note that we present terms in orthodox Church-style, i.e., instead of using contexts each
variable has a globally fixed type associated to it.

I Lemma 2.4. If s : τ and s ≡ t then t : τ .

Proof. Induction on s. J

I Definition 2.5. The set of terms is the set of the equivalence classes of ≡.

Because β-reduction on types is confluent and terminating, every term has a canonical
preterm representative – the one with all types occurring in it β-normalised. We define
FTV(t) as the value of FTV on the canonical representative of t. We say that t is closed
if both FTV(t) = ∅ and FV(t) = ∅. Because typing and term formation operations (ab-
straction, application, . . .) are invariant under ≡, we may denote terms by their (canonical)
representatives and informally treat them interchangeably.

We will often abuse notation to omit · and ∗. Thus, st can refer to both s · t and s ∗ t.
This is not ambiguous due to typing. When writing σ[α := τ] we implicitly assume that α
and τ have the same kind. Analogously with t[x := s].

I Lemma 2.6 (Substitution lemma). 1. If s : τ and x : σ and t : σ then s[x := t] : τ .
2. If t : σ then t[α := τ] : σ[α := τ].

Proof. Induction on the typing derivation. J

I Lemma 2.7 (Generation lemma). If t : σ then there is a type σ′ such that σ′ =β σ and
FTV(σ′) ⊆ FTV(t) and one of the following holds.

t ≡ x is a variable with (x : σ′) ∈ V.
t ≡ f is a function symbol with f : σ′ in Σ.
t ≡ λx : τ1.s and σ′ = τ1 → τ2 and s : τ2.
t ≡ Λα : κ.s and σ′ = ∀α : κ.τ and s : τ and α does not occur free in the type of a free
variable of s.
t ≡ t1 · t2 and t1 : τ → σ′ and t2 : τ and FTV(τ) ⊆ FTV(t).
t ≡ s ∗ τ and σ′ = ρ[α := τ] and s : ∀(α : κ).ρ and τ is a type constructor of kind κ.

Proof. By analysing the derivation t : σ. To ensure FTV(σ′) ⊆ FTV(t), note that if
α /∈ FTV(t) is of kind κ and t : σ′, then t : σ′[α := χκ] by the substitution lemma (thus we
can eliminate α). J

3 Polymorphic Functional Systems

In this section, we present a form of higher-order term rewriting systems based on Fω:
Polymorphic Functional Systems (PFSs). Systems of interest, such as logic systems like ICP2
and higher-order TRSs with shallow or full polymorphism can be encoded into PFSs, and
then proved terminating with the technique we will develop in Sections 4–6.

I Definition 3.1. Kinds, type constructors and types are defined like in Definition 2.1,
parameterised by a fixed set ΣT =

⋃
κ ΣTκ of type constructor symbols.

Let Σ be a set of function symbols such that for f : σ ∈ Σ:

σ = ∀(α1 : κ1) . . . ∀(αn : κn).σ1 → . . .→ σk → τ (with τ a type atom)

We define PFS terms as in Definition 2.5 (based on Definition 2.3), parameterised by Σ, with
the restriction that for any subterm s · u of a term t, we have s = fρ1 . . . ρnu1 . . . um where:

f : ∀(α1 : κ1) . . . ∀(αn : κn).σ1 → . . .→ σk → τ (with τ a type atom and k > m)

Ł. Czajka and C. Kop 12:5

This definition does not allow for a variable or abstraction to occur at the head of an
application, nor can we have terms of the form s · t ∗ τ · q (although terms of the form s · t ∗ τ ,
or x ∗ τ with x a variable, are allowed to occur). To stress this restriction, we will use
the notation fρ1,...,ρn(s1, . . . , sm) as an alternative way to denote fρ1 . . . ρns1 . . . sm when
f : ∀(α1 : κ1) . . . ∀(αn : κn).σ1 → . . .→ σk → τ is a function symbol in Σ with τ a type atom
and m ≤ k. This allows us to represent terms in a “functional” way, where application does
not explicitly occur (only implicitly in the construction of fρ1,...,ρn(s1, . . . , sm)).

The following result follows easily by induction on term structure:

I Lemma 3.2. If t, s are PFS terms then so is t[x := s].

PFS terms will be rewritten through a reduction relation −→R based on a (usually
infinite) set of rewrite rules. To define this relation, we need two additional notions.

I Definition 3.3. A replacement is a function δ = γ ◦ ω satisfying:
1. ω is a type constructor substitution,
2. γ is a term substitution such that γ(ω(x)) : ω(τ) for every (x : τ) ∈ V.

For τ a type constructor, we use δ(τ) to denote ω(τ). We use the notation δ[x := t] =
γ[x := t] ◦ ω. Note that if t : τ then δ(t) : δ(τ).

I Definition 3.4. A σ-context Cσ is a PFS term with a fresh function symbol �σ /∈ Σ
of type σ occurring exactly once. By Cσ[t] we denote a PFS term obtained from Cσ by
substituting t for �σ. We drop the σ subscripts when clear or irrelevant.

Now, the rewrite rules are simply a set of term pairs, whose monotonic closure generates
the rewrite relation.

I Definition 3.5. A set R of term pairs (`, r) is a set of rewrite rules if: (a) FV(r) ⊆ FV(`);
(b) ` and r have the same type; and (c) if (`, r) ∈ R then (δ(`), δ(r)) ∈ R for any replacement δ.
The reduction relation −→R on PFS terms is defined by:

t −→R s iff t = C[`] and s = C[r] for some (`, r) ∈ R and context C.

I Definition 3.6. A Polymorphic Functional System (PFS) is a triple (ΣT ,Σ,R) where ΣT
is a set of type constructor symbols, Σ a set of function symbols (restricted as in Def. 3.1),
and R is a set of rules as in Definition 3.5. A term of a PFS A is referred to as an A-term.

While PFS-terms are a restriction from the general terms of system Fω, the reduction
relation allows us to actually encode, e.g., system F as a PFS: we can do so by including the
symbol @ : ∀α∀β.(α→ β)→ α→ β in Σ and adding all rules of the form @σ,τ (λx.s, t) −→
s[x := t]. Similarly, β-reduction of type abstraction can be modelled by including a symbol
A : ∀α : ∗ ⇒ ∗.∀β.(∀γ.αγ) → αβ and rules Aλγ.σ,τ (Λγ.s) −→ s[γ := τ].1 We can also use
rules (Λα.s) ∗ τ −→ s[α := τ] without the extra symbol, but to apply our method it may be
convenient to use the extra symbol, as it creates more liberty in choosing an interpretation.

1 The use of a type constructor variable α of kind ∗ ⇒ ∗ makes it possible to do type substitution as
part of a rule. An application s ∗ τ with s : ∀γ.σ is encoded as Aλγ.σ,τ (s), so α is substituted with λγ.τ .
This is well-typed because (λγ.σ)γ =β σ and (λγ.σ)τ =β σ[γ := τ].

FSCD 2019

12:6 Polymorphic Higher-order Termination

I Example 3.7 (Fold on heterogenous lists). The example from the introduction may be
represented as a PFS with one type symbol List : ∗, the following function symbols:

@ : ∀α∀β.(α→ β)→ α→ β

A : ∀α : ∗ ⇒ ∗.∀β.(∀γ.αγ)→ αβ

nil : List
cons : ∀α.α→ List→ List

foldl : ∀β.(∀α.β → α→ β)→ β → List→ β

and the following rules (which formally represents an infinite set of rules: one rule for each
choice of types σ, τ and PFS terms s, t, etc.):

@σ,τ (λx : σ.s, t) −→ s[x := t]
Aλα.σ,τ (Λα.s) −→ s[α := τ]

foldlσ(f, s, nil) −→ s

foldlσ(f, s, consτ (h, t)) −→ foldlσ(f,@τ,σ(@σ,τ→σ(Aλα.σ→α→σ,τ (f), s), h), t)

4 A well-ordered set of interpretation terms

In polynomial interpretations of first-order term rewriting [20, Chapter 6.2], each term s is
mapped to a natural number JsK, such that JsK > JtK whenever s −→R t. In higher-order
rewriting, this is not practical; instead, following [14], terms are mapped to weakly monotonic
functionals according to their type (i.e., terms with a 0-order type are mapped to natural
numbers, terms with a 1-order type to weakly monotonic functions over natural numbers,
terms with a 2-order type to weakly monotonic functionals taking weakly monotonic functions
as arguments, and so on). In this paper, to account for full polymorphism, we will interpret
PFS terms to a set I of interpretation terms in a specific extension of System Fω. This set is
defined in Section 4.1; we provide a well-founded partial ordering � on I in Section 4.2.

Although our world of interpretation terms is quite different from the weakly monotonic
functionals of [14], there are many similarities. Most pertinently, every interpretation term
λx.s essentially defines a weakly monotonic function from I to I. This, and the use of
both addition and multiplication in the definition of I, makes it possible to lift higher-order
polynomial interpretations [5] to our setting. We prove weak monotonicity in Section 4.3.

4.1 Interpretation terms
I Definition 4.1. The set Y of interpretation types is the set of types as in Definition 2.1
with ΣT = {nat : ∗}, i.e., there is a single type constant nat. Then χ∗ = nat.

The set I of interpretation terms is the set of terms from Definition 2.5 (see also
Definition 2.3) where as types we take the interpretation types and for the set Σ of function
symbols we take Σ = {n : nat | n ∈ N} ∪ Σf , where Σf = {⊕ : ∀α.α→ α→ α,⊗ : ∀α.α→
α→ α, flatten : ∀α.α→ nat, lift : ∀α.nat→ α}.

For easier presentation, we write ⊕τ , ⊗τ , etc., instead of ⊕ ∗ τ , ⊗ ∗ τ , etc. We will
also use ⊕ and ⊗ in infix, left-associative notation, and omit the type denotation where
it is clear from context. Thus, s ⊕ t ⊕ u should be read as ⊕σ (⊕σ s t)u if s has type σ.
Thus, our interpretation terms include natural numbers with the operations of addition
and multiplication. It would not cause any fundamental problems to add more monotonic
operations, e.g., exponentiation, but we refrain from doing so for the sake of simplicity.

Ł. Czajka and C. Kop 12:7

Normalising interpretation terms

The set I of interpretation terms can be reduced through a relation , that we will define
below. This relation will be a powerful aid in defining the partial ordering � in Section 4.2.

I Definition 4.2. We define the relation on interpretation terms as the smallest relation
on I for which the following properties are satisfied:
1. if s t then both λx.s λx.t and Λα.s Λα.t
2. if s t then u · s u · t
3. if s t then both s · u t · u and s ∗ σ t ∗ σ
4. (λx : σ.s) · t s[x := t] and (Λα.s) ∗ σ s[α := σ] (β-reduction)
5. ⊕nat · n ·m n+m and ⊗nat · n ·m n×m
6. ◦σ→τ · s · t λx : σ. ◦τ ·(s · x) · (t · x) for ◦ ∈ {⊕,⊗}
7. ◦∀α.σ · s · t Λα. ◦σ ·(s ∗ α) · (t ∗ α) for ◦ ∈ {⊕,⊗}
8. flattennat · s s

9. flattenσ→τ · s flattenτ · (s · (liftσ · 0))
10. flatten∀α:κ.σ · s flattenσ[α:=χκ] · (s ∗ χκ)
11. liftnat · s s

12. liftσ→τ · s λx : σ.liftτ · s
13. lift∀α.σ · s Λα.liftσ · s
Recall Definition 2.5 and Definition 4.1 of the set of interpretation terms I as the set of the
equivalence classes of ≡. So, for instance, liftnat above denotes the equivalence class of all
preterms liftσ with σ =β nat. Hence, the above rules are invariant under ≡ (by confluence
of β-reduction on types), and they correctly define a relation on interpretation terms. We
say that s is a redex if s reduces by one of the rules 4–13. A final interpretation term is an
interpretation term s ∈ I such that (a) s is closed, and (b) s is in normal form with respect
to . We let If be the set of all final interpretation terms. By Iτ (Ifτ) we denote the set of
all (final) interpretation terms of interpretation type τ .

An important difference with System Fω and related ones is that the rules for ⊕τ , ⊗τ ,
flattenτ and liftτ depend on the type τ . In particular, type substitution in terms may
create redexes. For instance, if α is a type variable then ⊕αt1t2 is not a redex, but ⊕σ→τ t1t2
is. This makes the question of termination subtle. Indeed, System Fω is extremely sensitive to
modifications which are not of a logical nature. For instance, adding a constant J : ∀αβ.α→ β

with a reduction rule Jττ λx : τ.x makes the system non-terminating [7]. This rule breaks
parametricity by making it possible to compare two arbitrary types. Our rules do not allow
such a definition. Moreover, the natural number constants cannot be distinguished “inside”
the system. In other words, we could replace all natural number constants with 0 and this
would not change the reduction behaviour of terms. So for the purposes of termination, the
type nat is essentially a singleton. This implies that, while we have polymorphic functions
between an arbitrary type α and nat which are not constant when seen “from outside” the
system, they are constant for the purposes of reduction “inside” the system (as they would
have to be in a parametric Fω-like system). Intuitively, these properties of our system ensure
that it stays “close enough” to Fω so that the standard termination proof still generalises.

Now we state some properties of , including strong normalisation. Because of space
limitations, most (complete) proofs are delegated to Appendix A.1.

I Lemma 4.3 (Subject reduction). If t : τ and t t′ then t′ : τ .

Proof. By induction on the definition of t t′, using Lemmas 2.6 and 2.7. J

FSCD 2019

12:8 Polymorphic Higher-order Termination

I Theorem 4.4. If t : σ then t is terminating with respect to .

Proof. By an adaptation of the Tait-Girard computability method. The proof is an adapt-
ation of chapters 6 and 14 from the book [6], and chapters 10 and 11 from the book [16].
Details are available in Appendix A.1. J

I Lemma 4.5. Every term s ∈ I has a unique normal form s↓. If s is closed then so is s↓.

Proof. One easily checks that is locally confluent. Since the relation is terminating by
Theorem 4.4, it is confluent by Newman’s lemma. J

I Lemma 4.6. The only final interpretation terms of type nat are the natural numbers.

I Example 4.7. Let s ∈ Inat→nat and t ∈ Inat. Then we can reduce (s⊕ liftnat→nat(1)) ·
t (λx.sx ⊕ liftnat→nat(1)x) · t st ⊕ liftnat→nat(1)t st ⊕ (λy.liftnat(1))t st ⊕
liftnat(1) st⊕ 1. If s and t are variables, this term is in normal form.

4.2 The ordering pair (�,�)
With these ingredients, we are ready to define the well-founded partial ordering � on I. In
fact, we will do more: rather than a single partial ordering, we will define an ordering pair :
a pair of a quasi-ordering � and a compatible well-founded ordering �. The quasi-ordering
� often makes it easier to prove s � t, since it suffices to show that s � s′ � t′ � t for some
interpretation terms s′, t′. Having � will also allow us to use rule removal (Theorem 6.1).

I Definition 4.8. Let R ∈ {�0,�0}. For closed s, t ∈ Iσ and closed σ in β-normal form,
the relation s Rσ t is defined coinductively by the following rules.

s↓ R t↓ in N
s Rnat t

s · q Rτ t · q for all q ∈ Ifσ
s Rσ→τ t

s ∗ τ Rnfβ(σ[α:=τ]) t ∗ τ for all closed τ ∈ Tκ
s R∀(α:κ).σ t

We define s ≈0
σ t if both s �0

σ t and t �0
σ s. We drop the type subscripts when clear or

irrelevant.

Note that in the case for nat the terms s↓, t↓ are natural numbers by Lemma 4.6 (s↓, t↓
are closed and in normal form, so they are final interpretation terms).

Intuitively, the above definition means that e.g. s �0 t iff there exists a possibly infinite
derivation tree using the above rules. In such a derivation tree all leaves must witness
s↓ > t↓ in natural numbers. However, this also allows for infinite branches, which solves
the problem of repeating types due to impredicative polymorphism. If e.g. s �0

∀α.α t then
s ∗ ∀α.α �0

∀α.α t ∗ ∀α.α, which forces an infinite branch in the derivation tree. According to
our definition, any infinite branch may essentially be ignored.

Formally, the above coinductive definition of e.g. �0
σ may be interpreted as defining the

largest relation such that if s �0
σ t then:

σ = nat and s↓ > t↓ in N, or
σ = τ1 → τ2 and s · q �0

τ2
t · q for all q ∈ Ifτ1

, or
σ = ∀(α : κ).ρ and s ∗ τ �0

nfβ(ρ[α:=τ]) t ∗ τ for all closed τ ∈ Tκ.
For more background on coinduction see e.g. [13, 15, 9]. In this paper we use a few simple
coinductive proofs to establish the basic properties of � and �. Later, we just use these
properties and the details of the definition do not matter.

Ł. Czajka and C. Kop 12:9

I Definition 4.9. A closure C = γ ◦ ω is a replacement such that ω(α) is closed for each
type constructor variable α, and γ(x) is closed for each term variable x. For arbitrary
types σ and arbitrary terms s, t ∈ I we define s �σ t if for every closure C we can obtain
C(s) �cnfβ(C(σ)) C(t) coinductively with the above rules. The relations �σ and ≈σ are defined
analogously.

Note that for closed s, t and closed σ in β-normal form, s �σ t iff s �0
σ t (and analogously

for �,≈). In this case we shall often omit the superscript 0.
The definition of � and � may be reformulated as follows.

I Lemma 4.10. t � s if and only if for every closure C and every sequence u1, . . . , un of closed
terms and closed type constructors such that C(t)u1 . . . un : nat we have (C(t)u1 . . . un)↓ ≥
(C(s)u1 . . . un)↓ in natural numbers. An analogous result holds with � or ≈ instead of �.

Proof. The direction from left to right follows by induction on n; the other by coinduction. J

In what follows, all proofs by coinduction could be reformulated to instead use the
lemma above. However, this would arguably make the proofs less perspicuous. Moreover, a
coinductive definition is better suited for a formalisation – the coinductive proofs here could
be written in Coq almost verbatim.

Our next task is to show that � and � have the desired properties of an ordering pair;
e.g., transitivity and compatibility. We first state a simple lemma that will be used implicitly.

I Lemma 4.11. If τ ∈ Y is closed and β-normal, then τ = nat or τ = τ1 → τ2 or τ = ∀ασ.

I Lemma 4.12. � is well-founded.

Proof. It suffices to show this for closed terms and closed types in β-normal form, because
any infinite sequence t1 �τ t2 �τ t3 �τ . . . induces an infinite sequence C(t1) �nfβ(C(τ))
C(t2) �nfβ(C(τ)) C(t3) �nfβ(C(τ)) . . . for any closure C. By induction on the size of a β-
normal type τ (with size measured as the number of occurrences of ∀ and →) one proves
that there does not exist an infinite sequence t1 �τ t2 �τ t3 �τ . . . For instance, if α
has kind κ and t1 �∀ατ t2 �∀ατ t3 �∀ατ . . . then t1 ∗ χκ �τ ′ t2 ∗ χκ �τ ′ t3 ∗ χκ �τ ′ . . .,
where τ ′ = nfβ(τ [α := χκ]). Because τ is in β-normal form, all redexes in τ [α := χκ] are
created by the substitution and must have the form χκu. Hence, by the definition of χκ (see
Definition 2.1) the type τ ′ is smaller than τ . This contradicts the inductive hypothesis. J

I Lemma 4.13. Both � and � are transitive.

Proof. We show this for �, the proof for � being analogous. Again, it suffices to prove this
for closed terms and closed types in β-normal form. We proceed by coinduction.

If t1 �nat t2 �nat t3 then t1↓ > t2↓ > t3↓, so t1↓ > t3↓. Thus t1 �nat t3.
If t1 �σ→τ t2 �σ→τ t3 then t1 · q �τ t2 · q �τ t3 · q for q ∈ Ifσ . Hence t1 · q �τ t3 · q for

q ∈ Ifσ by the coinductive hypothesis. Thus t1 �σ→τ t3.
If t1 �∀(α:κ)σ t2 �∀(α:κ)σ t3 then t1∗τ �σ′ t2∗τ �σ′ t3∗τ for any closed τ of kind κ, where

σ′ = nfβ(σ[α := τ]). By the coinductive hypothesis t1 ∗ τ �σ′ t3 ∗ τ ; thus t1 �∀ασ t3. J

I Lemma 4.14. � is reflexive.

Proof. By coinduction one shows that �σ is reflexive on closed terms for closed β-normal σ.
The case of � is then immediate from definitions. J

I Lemma 4.15. The relations � and � are compatible, i.e., � · � ⊆ � and � · � ⊆ �.

FSCD 2019

12:10 Polymorphic Higher-order Termination

Proof. By coinduction, analogous to the transitivity proof. J

I Lemma 4.16. If t � s then t � s.

Proof. By coinduction. J

I Lemma 4.17. If t s then t ≈ s.

Proof. Follows from Lemma 4.10, noting that t s implies C(t) C(s) for all closures C. J

I Lemma 4.18. Assume t � s (resp. t � s). If t t′ or t′ t then t′ � s (resp. t′ � s).
If s s′ or s′ s then t � s′ (resp. t � s′).

Proof. Follows from Lemma 4.17, transitivity and compatibility. J

I Corollary 4.19. For R ∈ {�,�,≈}: s R t if and only if s ↓ R t ↓.

I Example 4.20. We can prove that x ⊕ liftnat→nat(1) � x: by definition, this holds if
s ⊕ liftnat→nat(1) � s for all closed s, so if (s ⊕ liftnat→nat(1))u � su for all closed s, u.
Following Example 4.7 and Lemma 4.18, this holds if su⊕ 1 � su. By definition, this is the
case if (su⊕ 1) ↓> (su) ↓ in the natural numbers, which clearly holds for any s, u.

4.3 Weak monotonicity
We will now show that s � s′ implies t[x := s] � t[x := s′] (weak monotonicity). For this
purpose, we prove a few lemmas, many of which also apply to �, stating the preservation
of � under term formation operations. We will need these results in the next section.

I Lemma 4.21. For R ∈ {�,�}: if t R s then tu R su with u a term or type constructor.

Proof. Follows from definitions. J

I Lemma 4.22. For R ∈ {�,�}: if n Rm then liftσn R liftσm for all types σ.

Proof. Without loss of generality we may assume σ closed and in β-normal form. By coin-
duction we show lift(n)u1 . . . uk � lift(m)u1 . . . uk for closed u1, . . . , uk. First note that
(lift t)u1 . . . uk ∗ lift(t) (with a different type subscript in lift on the right side, omitted
for conciseness). If σ = nat then (lift(n)u1 . . . uk)↓ = n ≥ m = (lift(m)u1 . . . uk)↓. If
σ = τ1 → τ2 then by the coinductive hypothesis lift(n)u1 . . . ukq �τ2 lift(m)u1 . . . ukq for
any q ∈ Ifτ1

, so lift(n)u1 . . . uk �σ lift(m)u1 . . . uk by definition. If σ = ∀(α : κ)τ then by
the coinductive hypothesis lift(n)u1 . . . ukξ �σ′ lift(m)u1 . . . ukξ for any closed ξ ∈ Tκ,
where σ′ = τ [α := ξ]. Hence lift(n)u1 . . . uk �σ lift(m)u1 . . . uk by definition. J

I Lemma 4.23. For R ∈ {�,�}: if t Rσ s then flattenσt Rnat flattenσs for all types σ.

Proof. Without loss of generality we may assume σ is closed and in β-normal form. Using
Lemma 4.18, the lemma follows by induction on σ. J

I Lemma 4.24. For R ∈ {�,�}: if t R s then λx.t R λx.s and Λα.t R Λα.s.

Proof. Assume t �τ s and x : σ. Let C be a closure. We need to show C(λx.t) �C(σ→τ)

C(λx.s). Let u ∈ IfC(σ). Then C′ = C[x := u] is a closure and C′(t) �C(τ) C′(s). Hence
C(t)[x := u] �C(τ) C(s)[x := u]. By Lemma 4.18 this implies C(λx.t)u �C(τ) C(λx.s)u.
Therefore C(λx.t) �C(σ→τ) C(λx.s). The proof for � is analogous. J

I Lemma 4.25. Let s, t, u be terms of type σ.

Ł. Czajka and C. Kop 12:11

1. If s � t then s⊕σ u � t⊕σ u, u⊕σ s � u⊕σ t, s⊗σ u � t⊗σ u, and u⊗σ s � u⊗σ t.
2. If s � t then s⊕σ u � t⊕σ u and u⊕σ s � u⊕σ t. Moreover, if additionally u � liftσ(1)

then also s⊗σ u � t⊗σ u and u⊗σ s � u⊗σ t.

Proof. It suffices to prove this for closed s, t, u and closed σ in β-normal form. The proof is
similar to the proof of Lemma 4.22. For instance, we show by coinduction that for closed
w1, . . . , wn (denoted ~w): if s~w � t~w and u~w � lift(1)~w then (s⊗ u)~w � (t⊗ u)~w. J

The following lemma depends on the lemmas above. The full proof may be found in
Appendix A.2. The proof is actually quite complex, and uses a method similar to Girard’s
method of candidates for the termination proof.

I Lemma 4.26 (Weak monotonicity). If s � s′ then t[x := s] � t[x := s′].

I Corollary 4.27. If s � s′ then ts � ts′.

5 A reduction pair for PFS terms

Recall that our goal is to prove termination of reduction in a PFS. To do so, in this section
we will define a systematic way to generate reduction pairs. We fix a PFS A, and define:

I Definition 5.1. A binary relation R on A-terms is monotonic if R(s, t) implies R(C[s], C[t])
for every context C (we assume s, t have the same type σ).

A reduction pair is a pair (�A,�A) of a quasi-order �A on A-terms and a well-founded
ordering �A on A-terms such that: (a) �A and �A are compatible, i.e., �A · �A ⊆ �A and
�A · �A ⊆ �A, and (b) �A and �A are both monotonic.

If we can generate such a pair with ` �A r for each rule (`, r) ∈ R, then we easily see that
the PFS A is terminating. (If we merely have ` �A r for some rules and ` �A r for the rest,
we can still progress with the termination proof, as we will discuss in Section 6.) To generate
this pair, we will define the notion of an interpretation from the set of A-terms to the set I
of interpretation terms, and thus lift the ordering pair (�,�) to A. In the next section, we
will show how this reduction pair can be used in practice to prove termination of PFSs.

One of the core ingredients of our interpretation function is a mapping to translate types:

I Definition 5.2. A type constructor mapping is a function TM which maps each type
constructor symbol to a closed interpretation type constructor of the same kind. A fixed
type constructor mapping TM is extended inductively to a function from type constructors
to closed interpretation type constructors in the expected way. We denote the extended
interpretation (type) mapping by JσK. Thus, e.g. J∀α.σK = ∀α.JσK and Jσ → τK = JσK→ JτK.

I Lemma 5.3. JσK[α := JτK] = Jσ[α := τ]K

Proof. Induction on σ. J

Similarly, we employ a symbol mapping as the key ingredient to interpret PFS terms.

I Definition 5.4. Given a fixed type constructor mapping TM, a symbol mapping is a
function J which assigns to each function symbol f : ρ a closed interpretation term J (f) of
type JρK. For a fixed symbol mapping J , we define the interpretation mapping JsK inductively:

JxK = x JΛα.sK = Λα.JsK Jt1 · t2K = Jt1K · Jt2K
JfK = J (f) Jλx : σ.sK = λx : JσK.JsK Jt ∗ τK = JtK ∗ JτK

FSCD 2019

12:12 Polymorphic Higher-order Termination

Note that JσK, JτK above depend on TM. Essentially, J·K substitutes TM(c) for type con-
structor symbols c, and J (f) for function symbols f, thus mapping A-terms to interpretation
terms. This translation preserves typing:

I Lemma 5.5. If s : σ then JsK : JσK.

Proof. By induction on the form of s, using Lemma 5.3. J

I Lemma 5.6. For all s, t, x, α, τ : JsK[α := JτK] = Js[α := τ]K and JsK[x := JtK] = Js[x := t]K.

Proof. Induction on s. J

I Definition 5.7. For a fixed type constructor mapping TM and symbol mapping J , the
interpretation pair (�J ,�J) is defined as follows: s �J t if JsK � JtK, and s �J t if JsK � JtK.

I Remark 5.8. The polymorphic lambda-calculus has a much greater expressive power
than the simply-typed lambda-calculus. Inductive data types may be encoded, along with
their constructors and recursors with appropriate derived reduction rules. This makes our
interpretation method easier to apply, even in the non-polymorphic setting, thanks to more
sophisticated “programming” in the interpretations. The reader is advised to consult e.g. [6,
Chapter 11] for more background and explanations. We demonstrate the idea by presenting
an encoding for the recursive type List and its fold-left function (see also Ex. 5.14).

I Example 5.9. Towards a termination proof of Example 3.7, we set TM(List) = ∀β.(∀α.β →
α → β) → β → β and J (nil) = Λβ.λf : ∀α.β → α → β.λx : β.x. If we addi-
tionally choose J (foldl) = Λβ.λf.λx.λl.lβfx ⊕ liftβ(1), we have Jfoldlσ(f, s, nil)K =
(Λβ.λf.λx.λl.lβfx⊕ liftβ(1))JσKfs(Λβ.λf.λx.x) ∗ s⊕ liftJσK(1) by β-reduction steps.
An extension of the proof from Example 4.20 shows that this term � JsK.

It is easy to see that �J and �J have desirable properties such as transitivity, reflexivity
(for �J) and well-foundedness (for �J). However, �J is not necessarily monotonic. Using the
interpretation from Example 5.9, Jfoldlσ(λx.s, t, nil)K = Jfoldσ(λx.w, t, nil)K regardless
of s and w, so a reduction in s would not cause a decrease in �J . To obtain a reduction
pair, we must impose certain conditions on J ; in particular, we will require that J is safe.

I Definition 5.10. If s1 � s2 implies t[x := s1] � t[x := s2], then the interpretation term t

is safe for x. A symbol mapping J is safe if for all f : ∀(α1 : κ1) . . . ∀(αn : κn).σ1 → . . .→
σk → τ with τ a type atom we have: J (f) = Λα1 . . . αn.λx1 . . . xk.t with t safe for each xi.

I Lemma 5.11. 1. xu1 . . . um is safe for x.
2. If t is safe for x then so are lift(t) and flatten(t).
3. If s1 is safe for x or s2 is safe for x then s1 ⊕ s2 is safe for x.
4. If either (a) s1 is safe for x and s2 � lift(1), or (b) s2 is safe for x and s1 � lift(1),

then s1 ⊗ s2 is safe for x.
5. If t is safe for x then so is Λα.t and λy.t (y 6= x).

Proof. Each point follows from one of the lemmas proven before, Lemma 4.16, Lemma 4.26,
Lemma 4.15 and the transitivity of �. For instance, for the first, assume s1 � s2 and
let uji = ui[x := sj]. Then (xu1 . . . um)[x := s1] = s1u

1
1 . . . u

1
m. By Lemma 4.21 we

have s1u
1
1 . . . u

1
m � s2u

1
1 . . . u

1
m. By Lemma 4.16 and Lemma 4.26 we have u1

i � u2
i . By

Corollary 4.27 and the transitivity of � we obtain s2u
1
1 . . . u

1
m � s2u

2
1 . . . u

2
m. By Lemma 4.15

finally (xu1 . . . um)[x := s1] = s1u
1
1 . . . u

1
m � s2u

2
1 . . . u

2
m = (xu1 . . . um)[x := s2]. J

I Lemma 5.12. If J is safe then �J is monotonic.

Ł. Czajka and C. Kop 12:13

Proof. Assume s1 �J s2. By induction on a context C we show C[s1] �J C[s2]. If C = �
then this is obvious. If C = λx.C ′ or C = Λα.C ′ then C ′[s1] �J C ′[s2] by the inductive
hypothesis, and thus C[s1] �J C[s2] follows from Lemma 4.24 and definitions. If C = C ′t

then C ′[s1] �J C ′[s2] by the inductive hypothesis, so C[s1] �J C[s2] follows from definitions.
Finally, assume C = t · C ′. Then t = fρ1 . . . ρnt1 . . . tm where f : ∀(α1 : κ1) . . . ∀(αn :

κn).σ1 → . . . → σk → τ with τ a type atom, m < k, and J (f) = Λα1 . . . αn.λx1 . . . xk.u

with u safe for each xi. Without loss of generality assume m = k − 1. Then JC[si]K
u′[xk := JC ′[si]K] where u′ = u[α1 := Jρ1K] . . . [αn := JρnK][x1 := Jt1K] . . . [xk−1 := Jtk−1K]. By
the inductive hypothesis JC ′[s1]K � JC ′[s2]K. Hence u′[xk := JC ′[s1]K] � u′[xk := JC ′[s2]K],
because u is safe for xk. Thus JC[s1]K � JC[s2]K by Lemma 4.18. J

I Theorem 5.13. If J is safe then (�J ,�J) is a reduction pair.

Proof. By Lemmas 4.13 and 4.14, �J is a quasi-order. Lemmas 4.12 and 4.13 imply that �J
is a well-founded ordering. Compatibility follows from Lemma 4.15. Monotonicity of �J
follows from Lemma 4.26. Monotonicity of �J follows from Lemma 5.12. J

I Example 5.14. The following is a safe interpretation for the PFS from Example 3.7:

TM(List) = ∀β.(∀α.β → α→ β)→ β → β

J (@) = Λα.Λβ.λf.λx. f · x⊕ liftβ(flattenα(x))
J (A) = Λα.Λβ.λx. x ∗ β

J (nil) = Λβ.λf.λx.x
J (cons) = Λα.λh.λt. Λβ.λf.λx.tβf(fαxh⊕ liftβ(flattenβ(x) ⊕

flattenα(h))) ⊕
liftβ(flattenβ(fαxh)⊕ flattenα(h)⊕ 1)

J (foldl) = Λβ.λf.λx.λl. lβfx⊕ liftβ(flatten∀α.β→α→β(f) ⊕
flattenβ(x)⊕ 1)

Note that J (cons) is not required to be safe for x, since x is not an argument of cons:
following its declaration, cons takes one type and two terms as arguments. The variable
x is only part of the interpretation. Note also that the current interpretation is a mostly
straightforward extension of Example 5.9: we retain the same core interpretations (which,
intuitively, encode @ and A as forms of application and encode a list as the function that
executes a fold over the list’s contents), but we add a clause ⊕lift(flatten(x)) for each
argument x that the initial interpretation is not safe for. The only further change is that,
in J (cons), the part between brackets has to be extended. This was necessitated by the
change to J (foldl), in order for the rules to still be oriented (as we will do in Example 6.6).

6 Proving termination with rule removal

A PFS A is certainly terminating if its reduction relation −→R is contained in a well-founded
relation, which holds if ` �J r for all its rules (`, r). However, sometimes it is cumbersome
to find an interpretation that orients all rules strictly. To illustrate, the interpretation of
Example 5.14 gives ` �J r for two of the rules and ` �J r for the others (as we will see in
Example 6.6). In such cases, proof progress is still achieved through rule removal.

I Theorem 6.1. Let R = R1∪R2, and suppose that R1 ⊆ �R and R2 ⊆ �R for a reduction
pair (�R,�R). Then −→R is terminating if and only if −→R2 is (so certainly if R2 = ∅).

FSCD 2019

12:14 Polymorphic Higher-order Termination

Proof. Monotonicity of �R and �R implies that −→R1 ⊆ �R and −→R2 ⊆ �R.
By well-foundedness of �R, compatibility of �R and �R, and transitivity of �R, every

infinite −→R sequence can contain only finitely many −→R1 steps. J

The above theorem gives rise to the following rule removal algorithm:
1. While R is non-empty:

a. Construct a reduction pair (�R,�R) such that all rules in R are oriented by �R or
�R, and at least one of them is oriented using �R.

b. Remove all rules ordered by �R from R.
If this algorithm succeeds, we have proven termination.

To use this algorithm with the pair (�J ,�J) from Section 5, we should identify an
interpretation (TM,J) such that (a) J is safe, (b) all rules can be oriented with �J or
�J , and (c) at least one rule is oriented with �J . The first requirement guarantees that
(�J ,�J) is a reduction pair (by Theorem 5.13). Lemma 5.11 provides some sufficient safety
criteria. The second and third requirements have to be verified for each individual rule.

I Example 6.2. We continue with our example of fold on heterogeneous lists. We prove
termination by rule removal, using the symbol mapping from Example 5.14. We will show:

@σ,τ (λx : σ.s, t) �J s[x := t]
Aλα.σ,τ (Λα.s) �J s[α := τ]

foldlσ(f, s, nil) �J s

foldlσ(f, s, consτ (h, t)) �J foldlσ(f,@τ,σ(@σ,τ→σ(Aλα.σ→α→σ,τ (f), s), h), t)

Consider the first inequality; by definition it holds if J@σ,τ (λx : σ.s, t)K � Js[x := t]K. Since
J@σ,τ (λx : σ.s, t)K ∗ JsK[x := JtK]⊕liftJτK(flattenJσK(JtK)), and JsK[x := JtK] = Js[x := t]K
(by Lemma 5.6), it suffices by Lemma 4.17 if Js[x := t]K⊕liftJτK(flattenJσK(JtK)) � Js[x :=
t]K. This is an instance of the general rule u⊕ w � u that we will obtain below.

To prove inequalities s � t and s � t, we will often use that � and � are transitive
and compatible with each other (Lem. 4.13 and 4.15), that ⊆≈ (Lem. 4.17), that � is
monotonic (Lem. 4.26), that both � and � are monotonic over lift and flatten (Lem. 4.22
and 4.23) and that interpretations respect substitution (Lem. 5.6). We will also use Lemma
4.25 which states (among other things) that s � t implies s⊕ u � t⊕ u. In addition, we can
use the calculation rules below. The proofs may be found in Appendix A.3.

I Lemma 6.3. For all types σ and all terms s, t, u of type σ, we have:
1. s⊕σ t ≈ t⊕σ s and s⊗σ t ≈ t⊗σ s;
2. s⊕σ (t⊕σ u) ≈ (s⊕σ t)⊕σ u and s⊗σ (t⊗σ u) ≈ (s⊗σ t)⊗σ u;
3. s⊗σ (t⊕σ u) ≈ (s⊗σ t)⊕σ (s⊗σ u);
4. (liftσ0)⊕σ s ≈ s and (liftσ1)⊗σ s ≈ s.

I Lemma 6.4. 1. liftσ(n+m) ≈σ (liftσn)⊕σ (liftσm);
2. liftσ(nm) ≈σ (liftσn)⊗σ (liftσm);
3. flattenσ(liftσ(n)) ≈ n.

I Lemma 6.5. For all types σ, terms s, t of type σ and natural numbers n > 0:
1. s⊕σ t � s and s⊕σ t � t;
2. s⊕σ (liftσn) � s and (liftσn)⊕σ t � t.

Ł. Czajka and C. Kop 12:15

Note that these calculation rules immediately give the inequality x⊕ liftnat→nat(1) � x
from Example 4.20, and also that liftσ(n) � liftσ(m) whenever n > m. By Lemmas 4.25
and 6.5 we can use absolute positiveness: the property that (a) s � t if we can write
s ≈ s1⊕· · ·⊕sn and t ≈ t1⊕· · ·⊕ tk with k ≤ n and si � ti for all i ≤ k, and (b) if moreover
s1 � t1 then s � t. This property is typically very useful to dispense the obligations obtained
in a termination proof with polynomial interpretations.

I Example 6.6. We now have the tools to finish the example of heterogeneous lists (still
using the interpretation from Example 5.14). The proof obligation from Example 6.2, that
J@σ,τ (λx : σ.s, t)K � Js[x := t]K, is completed by Lemma 6.5(1). We have JAλα.σ,τ (Λα.s)K ≈
JΛα.sK ∗ JτK ≈ Js[α := τ]K by Lemma 5.6, and Jfoldlσ(f, s, nil)K = JnilK ∗ JσK · JfK · JsK⊕
liftJσK(〈something〉 ⊕ 1) ≈ JsK ⊕ liftJσK(〈something〉 ⊕ 1) � JsK by Lemmas 6.4(1) and
6.5(1). For the last rule note that (using only Lemmas 4.17 and 6.4(1)):

Jfoldlσ(f, s, consτ (h, t))K ≈
Jconsτ (h, t))K ∗ JσK · JfK · JsK⊕ liftJσK(flatten(JfK)⊕ flatten(JsK)⊕ 1) ≈
(JtK ∗ JσK · JfK · (JfK ∗ JτK · JsK · JhK⊕ liftJσK(flatten(JsK)⊕ flatten(JhK))) ⊕

liftJσK(flatten(JfK ∗ JτK · JsK · JhK)⊕ flatten(JhK)⊕ 1)) ⊕
liftJσK(flatten(JfK)⊕ flatten(JsK)⊕ 1) ≈

JtK ∗ JσK · JfK · (JfK ∗ JτK · JsK · JhK⊕ liftJσK(flatten(JsK)⊕ flatten(JhK))) ⊕
liftJσK(flatten(JfK ∗ JτK·JsK·JhK)⊕ flatten(JhK)⊕ flatten(JfK)⊕ flatten(JsK)⊕ 2)

On the right-hand side of the inequality, noting that liftσ→τ (u) · w ∗ liftτ (u), we have:

Jfoldlσ(f,@τ,σ(@σ,τ→σ(Aλα.σ→α→σ,τ (f), s), h), t)K ≈
J (foldl)σ(JfK, JfK ∗ JτK · JsK · JhK⊕ liftJσK(flatten(JsK)⊕ flatten(JhK)), JtK) ≈
JtK ∗ JσK · JfK · (JfK ∗ JτK · JsK · JhK⊕ liftJσK(flatten(JsK)⊕ flatten(JhK))) ⊕

liftJσK(flatten(JfK)⊕ flatten(JfK ∗ JτK · JsK · JhK ⊕
liftJσK(flatten(JsK)⊕ flatten(JhK)))⊕ 1) ≈

JtK ∗ JσK · JfK · (JfK ∗ JτK · JsK · JhK⊕ liftJσK(flatten(JsK)⊕ flatten(JhK))) ⊕
liftJσK(flatten(JfK)⊕ flatten(JfK ∗ JτK·JsK·JhK)⊕ flatten(JsK)⊕ flatten(JhK)⊕ 1)

Now the right-hand side is the left-hand side ⊕ lift(1). Clearly, the rule is oriented with
�. Thus, we may remove the last two rules, and continue the rule removal algorithm
with only the first two, which together define β-reduction. This is trivial, for instance
with an interpretation J (@) = Λα.Λβ.λf.λx.(f · x)⊕ liftβ(flattenα(x)⊕ 1) and J (A) =
Λα.Λβ.λx.x ∗ β ⊕ liftαβ(1).

7 A larger example

System F is System Fω where no higher kinds are allowed, i.e., there are no type constructors
except types. By the Curry-Howard isomorphism F corresponds to the universal-implicational
fragment of intuitionistic second-order propositional logic, with the types corresponding to
formulas and terms to natural deduction proofs. The remaining connectives may be encoded
in F, but the permutative conversion rules do not hold [6].

In this section we show termination of the system IPC2 (see [17]) of intuitionistic second-
order propositional logic with all connectives and permutative conversions, minus a few
of the permutative conversion rules for the existential quantifier. The paper [17] depends
on termination of IPC2, citing a proof from [26], which, however, later turned out to be
incorrect. Termination of Curry-style IPC2 without ⊥ as primitive was shown in [19]. To our
knowledge, termination of the full system IPC2 remains an open problem, strictly speaking.

FSCD 2019

12:16 Polymorphic Higher-order Termination

I Remark 7.1. Our method builds on the work of van de Pol and Schwichtenberg, who used
higher-order polynomial interpretations to prove termination of a fragment of intuitionistic
first-order logic with permutative conversions [23], in the hope of providing a more perspicuous
proof of this well-known result. Notably, they did not treat disjunction, as we will do. More
fundamentally, their method cannot handle impredicative polymorphism necessary for second-
order logic.

The system IPC2 can be seen as a PFS with type constructors:

ΣTκ = { ⊥ : ∗, or : ∗ ⇒ ∗ ⇒ ∗, and : ∗ ⇒ ∗ ⇒ ∗, ∃ : (∗ ⇒ ∗)⇒ ∗}

We have the following function symbols:

@ : ∀α∀β.(α→ β)→ α→ β ε : ∀α.⊥ → α

tapp : ∀α : ∗ ⇒ ∗.∀β.(∀β[αβ])→ αβ pr1 : ∀α∀β.andαβ → α

pair : ∀α∀β.α→ β → andαβ pr2 : ∀α∀β.andαβ → β

case : ∀α∀β∀γ.orαβ → (α→ γ)→ (β → γ)→ γ in1 : ∀α∀β.α→ orαβ
let : ∀α : ∗ ⇒ ∗.∀β.(∃(α))→ (∀γ.αγ → β)→ β in2 : ∀α∀β.β → orαβ
ext : ∀α : ∗ ⇒ ∗.∀β.αβ → ∃(α)

The types represent formulas in intuitionistic second-order propositional logic, and the
terms represent proofs. For example, a term caseσ,τ,ρ s u v is a proof term of the formula
ρ, built from a proof s of or σ τ , a proof u that σ implies ρ and a proof v that τ implies ρ.
Proof terms can be simplified using 28 reduction rules, including the following (the full set of
rules is available in Appendix B):

@σ,τ (λx.s, t) −→ s[x := t]
tappλα.σ,τ (Λα.s) −→ s[α := τ] letϕ,ρ(extϕ,τ (s),Λα.λx.t) −→ t[α := τ][x := s]

pr1
σ,τ (pairσ,τ (s, t)) −→ s caseσ,τ,ρ(in1

σ,τ (u), λx.s, λy.t) −→ s[x := u]
pr2
σ,τ (pairσ,τ (s, t)) −→ t caseσ,τ,ρ(in2

σ,τ (u), λx.s, λy.t) −→ t[x := u]

@σ,τ (εσ→τ (s), t) −→ ετ (s)
caseσ,τ,ρ(εorσ τ (u), λx.s, λy.t) −→ ερ(u)
ερ(caseσ,τ,⊥(u, λx.s, λy.t)) −→ caseσ,τ,ρ(u, λx.ερ(s), λy.ερ(t))
pr2
ρ,π(caseσ,τ,and ρ,π(u, λx.s, λy.t)) −→ caseσ,τ,π(u, λx.pr2

ρ,π(s), λy.pr2
ρ,π(t))

caseρ,π,ξ(caseσ,τ,or ρ π(u, λx.s, λy.t), λz.v, λa.w) −→
caseσ,τ,ξ(u, λx.caseρ,π,ξ(s, λz.v, λa.w), λy.caseρ,π,ξ(t, λz.v, λa.w))

letϕ,ρ(caseσ,τ,∃ϕ(u, λx.s, λy.t), v) −→ caseσ,τ,ρ(u, λx.letϕ,ρ(s, v), λy.letϕ,ρ(t, v))
(∗) letψ,ρ(letϕ,∃ψ(s,Λα.λx : ϕα.t), u) −→ letϕ,ρ(s,Λα.λx : ϕα.letψ,ρ(t, u))

To define an interpretation for IPC2, we will use the standard encoding of product and
existential types (see [6, Chapter 11] for more details).

σ × τ = ∀p.(σ → τ → p)→ p π1
σ,τ (t) = tσ(λx : σ.λy : τ.x)

〈t1, t2〉σ,τ = Λp.λx : σ → τ → p.xt1t2 π2
σ,τ (t) = tτ(λx : σ.λy : τ.y)

Σα.σ = ∀p.(∀α.σ → p)→ p [τ, t]Σα.σ = Λp.λx : ∀α.σ → p.xτt

letρ t be [α, x : σ] in s = tρ(Λα.λx : σ.s)

We do not currently have an algorithmic method to find a suitable interpretation. Instead,
we used the following manual process. We start by noting the minimal requirements given by
the first set of rules (e.g., that pr1

σ,τ (pairσ,τ (s, t)) � s); to orient these inequalities, it would be
good to for instance have Jpairσ,τ (s, t)K � 〈JsK, JtK〉JσK,JτK and Jpriσ,τ (s)K = πiJσK,JτK(JsK). To

Ł. Czajka and C. Kop 12:17

make the interpretation safe, we additionally include clauses lift(flatten(x)) for any unsafe
arguments x; to make the rules strictly oriented, we include clauses lift(1). Unfortunately,
this approach does not suffice to orient the rules where some terms are duplicated, such
as the second- and third-last rules. To handle these rules, we multiply the first argument
of several symbols with the second (and possibly third). Some further tweaking gives the
following safe interpretation, which orients most of the rules:

TM(⊥) = nat TM(and) = λα1λα2.α1 × α2
TM(∃) = λ(α : ∗ ⇒ ∗).Σγ.αγ TM(or) = λα1λα2.α1 × α2

J (ε) = Λα : ∗.λx : nat. liftα(2⊗ x⊕ 1)
J (@) = ΛαΛβλx : α→ β.λy : α. liftβ(2)⊗ (x · y)⊕ liftβ(flattenα(y) ⊕

flattenα→β(x)⊗ flattenβ(y)⊕ 1)
J (tapp) = Λα : ∗ ⇒ ∗.Λβ.λx : ∀γ.αγ. liftαβ(2)⊗ (x ∗ β)⊕ liftαβ(1)
J (ext) = Λα : ∗ ⇒ ∗.Λβ : ∗.λx : αβ. [β, x]⊕ liftΣγ.βγ(flattenαγ(x))
J (pair) = ΛαΛβλx : α, y : β. 〈x, y〉 ⊕ liftα×β(flattenα(x)⊕ flattenβ(y))
J (pr1) = ΛαΛβλx : α× β. liftα(2)⊗ π1(x)⊕ liftα(1)
J (pr2) = ΛαΛβλx : α× β. liftβ(2)⊗ π2(x)⊕ liftβ(1)
J (in1) = ΛαΛβλx : α. 〈x, liftβ(1)〉 ⊕ liftα×β(flattenα(x))
J (in2) = ΛαΛβλx : β. 〈liftα(1), x〉 ⊕ liftα×β(flattenβ(x))

J (let) = Λα : ∗ ⇒ ∗.Λβ : ∗.λx : Σξ.αξ, y : ∀ξ.αξ → β.

liftβ(1)⊕ liftβ(2)⊗ (letβ x be [ξ, z] in yξz) ⊕
liftβ(flattenΣγ.αγ(x)⊕ 1)⊗ (y ∗ nat · liftαnat(0))

J (case) = Λα, β, ξ.λx : α× β, y : (α→ ξ), z : (β → ξ).
liftξ(2)⊕ liftξ(3⊗ flattenα×β(x))⊕

liftξ(flattenα×β(x)⊕ 1)⊗ (y · π1(x)⊕ z · π2(x))

Above, ⊗ binds stronger than ⊕. The derivations to orient rules with these interpretations
are also given in Appendix B.

The only rules that are not oriented with this interpretation – not with � either – are
the ones of the form f(let(s, t), . . .) −→ let(s, f(t, . . .)), like the rule marked (*) above.
Nonetheless, this is already a significant step towards a systematic, extensible methodology
of termination proofs for IPC2 and similar systems of higher-order logic. Verifying the
orientations is still tedious, but our method raises hope for at least partial automation, as
was done with polynomial interpretations for non-polymorphic higher-order rewriting [5].

8 Conclusions and future work

We introduced a powerful and systematic methodology to prove termination of higher-order
rewriting with full impredicative polymorphism. To use the method one just needs to invent
safe interpretations and verify the orientation of the rules with the calculation rules.

As the method is tedious to apply manually for larger systems, a natural direction
for future work is to look into automation: both for automatic verification that a given
interpretation suffices and – building on existing termination provers for first- and higher-order
term rewriting – for automatically finding a suitable interpretation.

In addition, it would be worth exploring improvements of the method that would allow
us to handle the remaining rules of IPC2, or extending other techniques for higher-order
termination such as orderings (see, e.g., [10]) or dependency pairs (e.g., [12, 18]).

FSCD 2019

12:18 Polymorphic Higher-order Termination

References
1 F. Blanqui. Definitions by rewriting in the calculus of constructions. MSCS, 15(1):37–92, 2005.
2 D. Cousineau and G. Dowek. Embedding pure type systemsin the lambda-pi-calculus modulo.

In TLCA, pages 102–117, 2017.
3 G. Dowek. Models and termination of proof reduction in the λπ-calculus modulo theory. In

ICALP, pages 109:1–109:14, 2017.
4 M. Fiore and M. Hamana. Multiversal polymorphic algebraic theories: syntacs, semantics,

translations and equational logic. In LICS, pages 520–520, 2013.
5 C. Fuhs and C. Kop. Polynomial interpretations for higher-order rewriting. In RTA, pages

176–192, 2012.
6 J.-V. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge University Press, 1989.
7 J.-Y. Girard. Une extension de l’interpretation de Gödel a l’analyse, et son application a

l’elimination des coupures dans l’analyse et la theorie des types. In SLS, pages 63 – 92. Elsevier,
1971.

8 M. Hamana. Polymorphic rewrite rules: Confluence, type inference, and instance validation.
In FLOPS, pages 99–115, 2018.

9 B. Jacobs and J. Rutten. An introduction to (co)algebras and (co)induction. In Advanced
Topics in Bisimulation and Coinduction, pages 38–99. Cambridge University Press, 2011.

10 J. Jouannaud and A. Rubio. Polymorphic higher-order recursive path orderings. JACM,
54(1):1–48, 2007.

11 C. Kop. Higher Order Termination. PhD thesis, VU University Amsterdam, 2012.
12 C. Kop and F. van Raamsdonk. Dynamic dependency pairs for algebraic functional systems.

LMCS, 8(2):10:1–10:51, 2012.
13 D. Kozen and A. Silva. Practical coinduction. Mathematical Structures in Computer Science,

27(7):1132–1152, 2017.
14 J.C. van de Pol. Termination of Higher-order Rewrite Systems. PhD thesis, University of

Utrecht, 1996.
15 D. Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University Press,

2012.
16 M.H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism. Elsevier, 2006.
17 M.H. Sørensen and P. Urzyczyn. A syntactic embedding of predicate logic into second-order

propositional logic. Notre Dame Journal of Formal Logic, 51(4):457–473, 2010.
18 S. Suzuki, K. Kusakari, and F. Blanqui. Argument filterings and usable rules in higher-order

rewrite systems. IPSJ Transactions on Programming, 4(2):1–12, 2011.
19 M. Tatsuta. Simple saturated sets for disjunction and second-order existential quantification.

In TLCA 2007, pages 366–380, 2007.
20 Terese. Term Rewriting Systems. Cambridge University Press, 2003.
21 A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University Press, 1996.
22 J.C. van de Pol. Termination proofs for higher-order rewrite systems. In HOA, pages 305–325,

1993.
23 J.C. van de Pol and H. Schwichtenberg. Strict functionals for termination proofs. In TLCA

95, pages 350–364, 1995.
24 D. Wahlstedt. Type Theory with First-Order Data Types and Size-Change Termination. PhD

thesis, Göteborg University, 2004.
25 D. Walukiewicz-Chrząszcz. Termination of rewriting in the calculus of constructions. JFP,

13(2):339–414, 2003.
26 A. Wojdyga. Short proofs of strong normalization. In MFCS, pages 613–623, 2008.

Ł. Czajka and C. Kop 12:19

A Complete proofs

A.1 Strong Normalisation of
By SN we denote the set of all interpretation terms terminating w.r.t. . We will use \a.s
for either λa.s or Λa.s, depending on typing.

For t ∈ SN by ν(t) we denote the length of the longest reduction starting at t. The
following lemma is obvious, but worth stating explicitly.

I Lemma A.1. If \a.s ∗ t, then t = \a.t′ and s ∗ t′. If s ∈ SN then both λx.s and Λα.s
are also in SN.

Proof. We observe that every reduct of \x.s has the form \x.s′ with s s′, and analogously
for Λα.s. Thus, the first statement follows by induction on the length of the reduction
\a.s ∗ t, and the second statement by induction on ν(s). J

I Lemma A.2. If t1, t2 ∈ SN then ◦natt1t2 ∈ SN for ◦ ∈ {⊕,⊗}.

Proof. By induction on ν(t1) + ν(t2). Assume t1, t2 ∈ SN. To prove ◦natt1t2 ∈ SN it suffices
to show s ∈ SN for all s such that ◦natt1t2 s. If s = ◦natt

′
1t2 or s = ◦natt1t

′
2 with ti t′i

then we complete by the induction hypothesis. Otherwise s ∈ N is obviously in SN. J

In the rest of this section we adapt Tait-Girard’s method of candidates to prove termination
of . The proof is an adaptation of chapters 6 and 14 from the book [6], and chapters 10
and 11 from the book [16].

I Definition A.3. A term t is neutral if there does not exist a sequence of terms and
types u1, . . . , un with n ≥ 1 such that tu1 . . . un is a redex (by).

By induction on the kind κ of a type constructor τ we define the set Cτ of all candidates
of type constructor τ .

First assume κ = ∗, i.e., τ is a type. A set X of interpretation terms of type τ is a
candidate of type τ when:
1. X ⊆ SN;
2. if t ∈ X and t t′ then t′ ∈ X;
3. if t is neutral and for every t′ with t t′ we have t′ ∈ X, then t ∈ X;
4. if t1, t2 ∈ X then ◦τ t1t2 ∈ X for ◦ ∈ {⊕,⊗};
5. if t ∈ SN and t : nat then liftτ t ∈ X;
6. if t ∈ X then flattenτ t ∈ SN.
Note that item 3 above implies:

if t is neutral and in normal form then t ∈ X.

Now assume κ = κ1 ⇒ κ2. A function f : Tκ1 ×
⋃
ξ∈Tκ1

Cξ →
⋃
ξ∈Tκ2

Cξ is a candidate of
type constructor τ if for every closed type constructor σ of kind κ1 and a candidate X ∈ Cσ
we have f(σ,X) ∈ Cτσ.

Note that the elements of a candidate of type τ are required to have type τ .

I Lemma A.4. If σ =β σ
′ then Cσ = Cσ′ .

Proof. Induction on the kind of σ. J

FSCD 2019

12:20 Polymorphic Higher-order Termination

I Definition A.5. Let ω be a mapping from type constructor variables to type constructors
(respecting kinds). The mapping ω extends in an obvious way to a mapping from type
constructors to type constructors. A mapping ω is closed for σ if ω(α) is closed for α ∈ FTV(σ)
(then ω(σ) is closed).

An ω-valuation is a mapping ξ from type constructor variables to candidates such that
ξ(α) ∈ Cω(α).

For each type constructor σ, each mapping ω closed for σ, and each ω-valuation ξ, the
set JσKωξ is defined by induction on σ:

JαKωξ = ξ(α) for a type constructor variable α,
JnatKωξ is the set of all terms t ∈ SN such that t : nat,
Jσ → τKωξ is the set of all terms t such that t : ω(σ → τ) and for every s ∈ JσKωξ with
s : ω(σ) we have t · s ∈ JτKωξ ,
J∀(α : κ)σKωξ is the set of all terms t such that t : ω(∀ασ) and for every closed type
constructor ϕ of kind κ and every X ∈ Cϕ we have t ∗ ϕ ∈ JσKω[α:=ϕ]

ξ[α:=X],
JϕψKωξ = JϕKωξ (ω(ψ), JψKωξ),
Jλ(α : κ)ϕKωξ (ψ,X) = JϕKω[α:=ψ]

ξ[α:=X] for closed ψ ∈ Tκ and X ∈ Cψ.
In the above, if e.g. JψKωξ /∈ Cω(ψ) then JϕψKωξ is undefined.

If ϕ is closed then ω, ξ do not affect the value of JϕKωξ , so then we simply write JϕK.

I Lemma A.6. JnatK ∈ Cnat.

Proof. We check the conditions in Definition A.3.
1. JnatK ⊆ SN follows directly from Definition A.5.
2. Let t ∈ JnatK and t t′. Then t : nat and t ∈ SN. Hence t′ ∈ SN, and t′ : nat by the

subject reduction lemma. Thus t′ ∈ JnatK.
3. Let t be neutral and t : nat. Assume that for all t′ with t t′ we have t′ ∈ JnatK, so in

particular t′ ∈ SN. But then t ∈ SN. Hence t ∈ JnatK.
4. Let t1, t2 ∈ SN be such that ti : nat. Obviously, ◦natt1t2 : nat. Also ◦natt1t2 ∈ SN follows

by Lemma A.2. So ◦natt1t2 ∈ JnatK.
5. Let t ∈ SN be such that t : nat. Then liftnatt : nat. It remains to show liftnatt ∈ SN.

Any infinite reduction from liftnatt has the form liftnatt ∗ liftnatt0 t1 t2 . . .

or liftnatt liftnatt0 liftnatt1 liftnatt2 . . ., where t ∗ t0 and ti ti+1.
This contradicts t ∈ SN.

6. Let t ∈ SN be such that t : nat. The proof of flattennatt ∈ SN is analogous to the proof
of liftnatt ∈ SN above. J

I Lemma A.7. JχκK ∈ Cχκ .

Proof. Induction on κ. If κ = ∗ then this follows from Lemma A.6. If κ = κ1 ⇒ κ2 then
χκ = λα : κ1.χκ2 . Let ψ be a closed type constructor of kind κ1 and let X ∈ Cχκ1

. We
have JχκK(ψ,X) = Jχκ2K because χκ2 is closed. By the inductive hypothesis JχκK(ψ,X) =
Jχκ2K ∈ Cχκ2

. This implies JχκK ∈ Cχκ . J

I Lemma A.8. Let σ, τ be types. Suppose JτKω
′

ξ′ ∈ Cω′(τ) and JσKω
′

ξ′ ∈ Cω′(σ) for all suitable
ω′, ξ′. Then

λx.s ∈ Jτ → σKωξ if and only if λx.s : ω(τ → σ) and s[x := t] ∈ JσKωξ for all t ∈ JτKωξ ;
Λα.s ∈ J∀(α : κ).σKωξ if and only if Λα.s : ω(∀(α : κ).σ) and for every closed type
constructor ϕ of kind κ and all X ∈ Cϕ we have s[α := ϕ] ∈ JσKω[α:=ϕ]

ξ[α:=X].

Ł. Czajka and C. Kop 12:21

Proof. First suppose λx : ω(τ).s ∈ Jτ → σKωξ . Then λx : ω(τ).s : ω(τ → σ) and for all
t ∈ JτKωξ we have (λx : ω(τ).s)·t ∈ JσKωξ . As this set is a candidate, it is closed under , so also
s[x := t] ∈ JσKωξ . Similarly, if Λα.s ∈ J∀α.σKωξ , then Λα.s : ∀α.σ and (Λα.s) ∗ ϕ ∈ JσKω[α:=ϕ]

ξ[α:=X],
and we are done because (Λα.s) ∗ τ s[α := ϕ] and JσKω[α:=ϕ]

ξ[α:=X] is a candidate, so it is closed
under .

Now suppose s[x := t] ∈ JσKωξ for all t ∈ JτKωξ . Let t ∈ JτKωξ . Then t ∈ SN because JτKωξ is
a candidate. Also s ∈ SN because every infinite reduction in s induces an infinite reduction in
s[x := t] (is stable) and JσKωξ ⊆ SN is a candidate. For all s′, t′ with s ∗ s′ and t ∗ t′,
we show by induction on ν(s′) + ν(t′) that (λx.s′) · t′ ∈ JσKωξ . We have (λx.s′) · t′ : ω(σ) by
definition and the subject reduction theorem (note that t : ω(τ) because JτKωξ ∈ Cω(τ)). The
set JσKωξ is a candidate, and (λx.s′) · t′ is neutral, so in JσKωξ if all its reducts are. Thus assume
(λx.s′) · t′ u. If u = (λx.s′) · t′′ with t′ t′′ or u = (λx.s′′) · t′ with s′ s′′, then u ∈ JσKωξ
by the inductive hypothesis. So assume u = s′[x := t′]. We have s[x := t] ∗ s′[x := t′] by
monotonicity and stability of . Therefore u = s′[x := t′] ∈ JσKωξ , because s[x := t] ∈ JσKωξ
and JσKωξ is a candidate and hence closed under .

A similar reasoning applies to s[α := ϕ]. J

I Lemma A.9. If σ is a type constructor, ω is closed for σ, and ξ is an ω-valuation, then
JσKωξ ∈ Cω(σ).

Proof. By induction on the structure of σ we show that JσKωξ ∈ Cω(σ) for all suitable ω, ξ.
First, if σ = α is a type constructor variable α then JσKωξ = ξ(α) ∈ Cω(σ) by definition. If
σ = nat then JnatKωξ ∈ Cnat by Lemma A.6.

Assume σ = τ1 → τ2. We check the conditions in Definition A.3.
1. Let t ∈ Jτ1 → τ2Kωξ and assume there is an infinite reduction t t1 t2 t3 By

the inductive hypothesis Jτ1Kωξ and Jτ2Kωξ are candidates. Let x be a fresh variable. Then
xω(τ1) : ω(τ1) and xω(τ1) ∈ Jτ1Kωξ because it is neutral and normal. Thus tx ∈ Jτ2Kωξ ⊆ SN.
But tx t1x t2x t3x Contradiction.

2. Let t ∈ Jτ1 → τ2Kωξ and t t′. Let u ∈ Jτ1Kωξ be such that u : ω(τ1). Then tu ∈ Jτ2Kωξ . By
the inductive hypothesis Jτ2Kωξ is a candidate, so t′u ∈ Jτ2Kωξ . Also note that t′ : ω(τ1 → τ2)
by the subject reduction lemma. Hence t′ ∈ Jτ1 → τ2Kωξ .

3. Let t be neutral such that t : ω(τ1 → τ2). Assume for every t′ with t t′ we have
t′ ∈ Jτ1 → τ2Kωξ . Let u ∈ Jτ1Kωξ be such that u : ω(τ1). By the inductive hypothesis
Jτ1Kωξ is a candidate, so u ∈ SN. By induction on ν(u) we show that tu ∈ Jτ2Kωξ . Assume
tu t′′. We show t′′ ∈ Jτ2Kωξ . Because t is neutral, tu cannot be a redex. So there are
two cases.
t′′ = tu′ with u u′. Then u′ ∈ Jτ1Kωξ because Jτ1Kωξ is a candidate, and u′ : ω(τ1) by
the subject reduction lemma. So tu′ ∈ Jτ2Kωξ by the inductive hypothesis for u.
t′′ = t′u with t t′. Then t′ ∈ Jτ1 → τ2Kωξ by point 2 above. So t′u ∈ Jτ2Kωξ .

We have thus shown that if tu t′′ then t′′ ∈ Jτ2Kωξ . By the (main) inductive hypothesis
Jτ2Kωξ is a candidate. Because tu is neutral, the above implies tu ∈ Jτ2Kωξ . Since u ∈ Jτ1Kωξ
was arbitrary with u : ω(τ1), we have shown t ∈ Jτ1 → τ2Kωξ .

4. Assume t1, t2 ∈ Jτ1 → τ2Kωξ . We have already shown that this implies t1, t2 ∈ SN. Let
s = ◦ω(τ1→τ2)t1t2. We show s ∈ Jτ1 → τ2Kωξ by induction on ν(t1) + ν(t2). Note that
s : ω(τ1 → τ2) because ti : ω(τ1 → τ2). Since s is neutral, we have already seen in
point 3 above that to prove s ∈ Jτ1 → τ2Kωξ it suffices to show that s′ ∈ Jτ1 → τ2Kωξ
whenever s s′. If s′ = ◦ω(τ1→τ2)t

′
1t2 with t1 t′1, then note that t′1 ∈ Jτ1 → τ2Kωξ

because we have already shown that Jτ1 → τ2Kωξ is closed under ; thus, we can complete
by the induction hypothesis. If s′ = ◦ω(τ1→τ2)t1t

′
2, we complete in the same way. The

FSCD 2019

12:22 Polymorphic Higher-order Termination

only alternative is that s′ = λx : ω(τ1). ◦ω(τ2) (t1x)(t2x). Let u ∈ Jτ1Kωξ . Then u : ω(τ1)
because Jτ1Kωξ ∈ Cω(τ1) by the inductive hypothesis. Since t1, t2 ∈ Jτ1 → τ2Kωξ , we have
that t1u and t2u are in Jτ2Kωξ by definition. Since Jτ2Kωξ is a candidate, this means that
◦ω(τ2)(t1u)(t2u) = (◦ω(τ2)(t1x)(t2x))[x := u] is in Jτ2Kωξ as well. By Lemma A.8, we
conclude that s′ ∈ Jτ1 → τ2Kωξ .

5. Let t ∈ SN satisfy t : nat, and let s = liftω(τ1→τ2)(t). We show s ∈ Jτ1 → τ2Kωξ by
induction on ν(t). We have s : ω(τ1 → τ2) because t : nat. Since s is neutral, we have
already proved above in point 3 that it suffices to show that s′ ∈ Jτ1 → τ2Kωξ whenever
s s′. If s′ = liftω(τ1→τ2)(t′) with t t′ then still t′ ∈ SN and t′ : nat, so s′ ∈ Jτ1 →
τ2Kωξ by the inductive hypothesis. The only alternative is that s′ = λx : ω(τ1).liftω(τ2)(t).
Let u ∈ Jτ1Kωξ be such that u : ω(τ1). Because Jτ2Kωξ ∈ Cω(τ2) by the (main) inductive
hypothesis for σ, we have liftω(τ2)(t) ∈ Jτ2Kωξ . Since liftω(τ2)(t) = (liftω(τ2)x)[x := t]
we obtain s′ ∈ Jτ1 → τ2Kωξ by Lemma A.8.

6. Let t ∈ Jτ1 → τ2Kωξ . We show s := flattenω(τ1→τ2)t ∈ SN. We have already shown
t ∈ SN in point 1 above. Thus any infinite reduction starting from s must have the form
s ∗ flattenω(τ1→τ2)t

′ flattenω(τ2)(t′(liftω(τ1)0)) . . . with t ∗ t′. We have
already shown in point 2 above that Jτ1 → τ2Kωξ is closed under , so t′ ∈ Jτ1 → τ2Kωξ . By
the inductive hypothesis Jτ1Kωξ ∈ Cω(τ1), so liftω(τ1)0 ∈ Jτ1Kωξ by property 5 of candidates.
Hence t′(liftω(τ1)0) ∈ Jτ2Kωξ by definition. But by the inductive hypothesis Jτ2Kωξ is a
candidate, so flattenω(τ2)(t′(liftω(τ1)0)) ∈ SN. Contradiction.

Assume σ = ∀(α : κ)τ . We check the conditions in Definition A.3.
1. Let t ∈ J∀(α : κ)τKωξ and assume there is an infinite reduction t t1 t2 t3

Recall that χκ from Definition 2.1 is a closed type constructor of kind κ. By Lemma A.7
we have JχκK ∈ Cχκ . Then tχκ ∈ JτKω[α:=χκ]

ξ[α:=JχκK]. By the inductive hypothesis JτKω[α:=χκ]
ξ[α:=JχκK]

is a candidate, so tχκ ∈ SN. But tχκ t1χκ t2χκ t3χκ Contradiction.
2. Let t ∈ J∀ατKωξ and t t′. By the subject reduction lemma t′ : ω(∀ατ). Let ϕ be a

closed type constructor of kind κ and X ∈ Cϕ. Then tϕ ∈ JτKω[α:=ϕ]
ξ[α:=X]. By the inductive

hypothesis JτKω[α:=ϕ]
ξ[α:=X] is a candidate, so t′ϕ ∈ JτKω[α:=ϕ]

ξ[α:=X]. Therefore t
′ ∈ J∀ατKωξ .

3. Let t be neutral such that t : ω(∀ατ), and assume that for every t′ with t t′ we have
t′ ∈ J∀ατKωξ . Let ϕ be a closed type constructor of kind κ and X ∈ Cϕ. Assume tϕ t′′.
Then t′′ = t′ϕ with t t′, because t is neutral. Hence tϕ t′ϕ ∈ JτKω[α:=ϕ]

ξ[α:=X]. By the
inductive hypothesis JτKω[α:=ϕ]

ξ[α:=X] is a candidate. Also tϕ is neutral, so tϕ ∈ JτKω[α:=ϕ]
ξ[α:=X]

because t′′ was arbitrary with tϕ t′′. This implies that t ∈ J∀ατKωξ .
4. Assume t1, t2 ∈ J∀ατKωξ . We have already shown that this implies t1, t2 ∈ SN. We prove
◦ω(∀ατ)t1t2 ∈ J∀ατKωξ by induction on ν(t1) + ν(t2). Since s := ◦ω(∀ατ)t1t2 is neutral, we
have already proven that it suffices to show that s′ ∈ J∀ατKωξ whenever s s′. The
cases when t1 or t2 are reduced are immediate with the induction hypotheses. The
only remaining case is when s′ = Λα. ◦ω(τ) (t1α)(t2α). For all closed type constructors
ϕ of kind κ and all X ∈ Cϕ we have both t1ϕ and t2ϕ in JτKω[α:=ϕ]

ξ[α:=X] (by definition of
t1, t2 ∈ J∀ατKωξ). Let ω′ = ω[α := ϕ]. By bound variable renaming, we may assume
ω(α) = α and α does not occur in t1, t2. Because JτKω[α:=ϕ]

ξ[α:=X] is a candidate by the
inductive hypothesis for σ, we have

◦ω′(τ)(t1ϕ)(t2ϕ) = (◦ω(τ)(t1α)(t2α))[α := ϕ] ∈ JτKω[α:=ϕ]
ξ[α:=X].

Hence s′ ∈ J∀ατKωξ by Lemma A.8.

Ł. Czajka and C. Kop 12:23

5. Let t ∈ SN be such that t : nat. By induction on ν(t) we show s := liftω(∀ατ)(t) ∈
J∀ατKωξ . First note that s : ω(∀ατ). Since s is neutral, by the already proven point 3
above, it suffices to show that s′ ∈ J∀ατKωξ whenever s s′. The case when t is
reduced is immediate by the inductive hypothesis. The only remaining case is when
s′ = Λα.liftω(τ)(t) (without loss of generality assuming ω(α) = α). Let ϕ be a closed
type constructor of kind κ and let X ∈ Cϕ. Because JτKω[α:=ϕ]

ξ[α:=X] is a candidate, we have

liftω[α:=ϕ](τ)(t) = (liftω(τ)(t))[α := ϕ] ∈ JτKω[α:=ϕ]
ξ[α:=X].

This implies s′ ∈ J∀ατKωξ .
6. Let t ∈ J∀ατKωξ . We show s := flattenω(∀ατ)t ∈ SN. We have already shown t ∈ SN in

point 1 above. Thus any infinite reduction starting from s must have the form s ∗

flattenω(∀ατ)t
′ flattenω(τ)[α:=χκ](t′χκ) . . . with t ∗ t′ (assuming ω(α) = α

without loss of generality). We have already shown in point 2 above that J∀ατKωξ is
closed under , so t′ ∈ J∀ατKωξ . We have JχκK ∈ Cχκ by Lemma A.7. Since χκ is
also closed, we have t′χκ ∈ JτKω[α:=χκ]

ξ[α:=JχκK] by definition of J∀ατKωξ . By the inductive
hypothesis JτKω[α:=χκ]

ξ[α:=JχκK] ∈ Cω[α:=χκ](τ). Hence flattenω[α:=χκ](τ)(t′χκ) ∈ SN. But
ω[α := χκ](τ) = ω(τ)[α := χκ] because χκ is closed and ω(α) = α. Contradiction.

Assume σ = ϕψ, with ψ of kind κ1 and ϕ of kind κ1 ⇒ κ2. By the inductive hypothesis
JψKωξ ∈ Cω(ψ) and JϕKωξ ∈ Cω(ϕ). Because applying ω does not change kinds, we have
JϕψKωξ = JϕKωξ (ω(ψ), JψKωξ) ∈ Cω(ϕψ), by the definition of candidates of a type constructor
with kind κ1 ⇒ κ2 (note that ω(ψ) is closed, because ω is closed for σ).

Finally, assume σ = λ(α : κ)ϕ. Let ψ be a closed type constructor of kind κ and X ∈ Cψ.
By the inductive hypothesis Jλ(α : κ)ϕKωξ (ψ,X) = JϕKω[α:=ψ]

ξ[α:=X] ∈ Cω[α:=ψ](ϕ). Because ψ
is closed we have ω[α := ψ](ϕ) = ω(ϕ[α := ψ]) =β ω((λα.ϕ)ψ) = ω(σψ) = ω(σ)ψ. By
Lemma A.4 this implies that JσKωξ ∈ Cω(σ). J

I Lemma A.10. ◦ ∈ J∀α.α→ α→ αK for ◦ ∈ {⊕,⊗}.

Proof. Follows from definitions and property 4 of candidates. J

I Lemma A.11. lift ∈ J∀α.nat→ αK.

Proof. Follows from definitions and property 5 of candidates. J

I Lemma A.12. flatten ∈ J∀α.α→ natK.

Proof. Follows from definitions and property 6 of candidates. J

I Lemma A.13. For any type constructors σ, τ with α /∈ FTV(τ), a mapping ω closed for σ
and for τ , and an ω-valuation ξ, we have:

Jσ[α := τ]Kωξ = JσKω[α:=ω(τ)]
ξ[α:=JτKω

ξ
] .

Proof. Let ω′ = ω[α := ω(τ)] and ξ′ = ξ[α := JτKωξ]. First note that ω is closed for σ[α := τ]
and ω′ is closed for σ. We proceed by induction on σ. If α /∈ FTV(σ) then the claim is
obvious. If σ = α then Jσ[α := τ]Kωξ = JτKωξ = JσKω

′

ξ′ .
Assume σ = σ1 → σ2. We show Jσ[α := τ]Kωξ ⊆ JσKω

′

ξ′ . Let t ∈ Jσ[α := τ]Kωξ . We have
t : ω(σ[α := τ]), so t : ω′(σ). Let u ∈ Jσ1Kω

′

ξ′ . By the inductive hypothesis u ∈ Jσ1[α := τ]Kωξ .
Hence tu ∈ Jσ2[α := τ]Kωξ = Jσ2Kω

′

ξ′ , where the last equality follows from the inductive

FSCD 2019

12:24 Polymorphic Higher-order Termination

hypothesis. Thus t ∈ JσKω
′

ξ′ . The other direction is analogous. The case σ = ∀ασ′ is also
analogous.

Assume σ = ϕψ. We have Jσ[α := τ]Kωξ = Jϕ[α := τ]Kωξ (ω(ψ[α := τ]), Jψ[α := τ]Kωξ) =
Jϕ[α := τ]Kωξ (ω′(ψ), Jψ[α := τ]Kωξ) = JϕKω

′

ξ′ (ω′(ψ), JψKω
′

ξ′) where the last equality follows from
the inductive hypothesis.

Finally, assume σ = λ(β : κ)ϕ. Let ψ ∈ Tκ be closed and let X ∈ Cψ. We have
Jσ[α := τ]Kωξ (ψ,X) = Jϕ[α := τ]Kω[β:=τ]

ξ[β:=X] = JϕKω
′[β:=τ]
ξ′[β:=X] = JσKω

′

ξ′ (ψ,X) where we use the
inductive hypothesis in the penultimate equality. J

I Lemma A.14. Let τ be a type constructor of kind κ. Assume ω is closed for ∀ασ and
for τ . If t ∈ J∀(α : κ)σKωξ then t(ω(τ)) ∈ Jσ[α := τ]Kωξ .

Proof. By Lemma A.9 we have JτKωξ ∈ Cω(τ). So t(ω(τ)) ∈ JσKω[α:=ω(τ)]
ξ[α:=JτKω

ξ
] by t ∈ J∀(α : κ)σKωξ .

Hence t(ω(τ)) ∈ Jσ[α := τ]Kωξ by Lemma A.13. J

I Lemma A.15. If ω is closed for σ, σ′ and σ =β σ
′ then JσKωξ = Jσ′Kωξ .

Proof. It suffices to show the lemma for the case when σ is a β-redex. Then the general case
follows by induction on σ and the length of reduction to a common reduct.

So assume (λατ)σ →β τ [α := σ]. We have J(λατ)σKωξ = JλατKωξ (ω(σ), JσKωξ) =
JτKω[α:=ω(σ)]

ξ[α:=JσKω
ξ

] = Jτ [α := σ]Kωξ where the last equality follows from Lemma A.13. J

A mapping ω on type constructors is extended in the obvious way to a mapping on terms.
Note that ω also acts on the type annotations of variable occurrences, e.g. ω(λx : α.xα) =
λx : ω(α).xω(α).

I Lemma A.16. If t : σ and ω is closed for σ and FTV(ω(t)) = ∅ then ω(t) ∈ JσKωξ .

Proof. We prove by induction on the structure of t that if t : σ and ω is closed for σ
and FTV(ω(t)) = ∅ and xτ1

1 , . . . , x
τn
n are all free variable occurrences in the canonical

representative of t (so each τi is β-normal), then for all u1 ∈ Jτ1Kωξ , . . . , un ∈ JτnKωξ we have
ω(t)[x1 := u1, . . . , xn := un] ∈ JσKωξ . This suffices because ω(xτii) ∈ JτiKωξ . Note that ω is
closed for each τi because FTV(ω(t)) = ∅ and t is typed, so no type constructor variable
occurring free in τi can be bound in t by a Λ; e.g. Λα.xα is not a valid typed term (we assume τi
to be in β-normal form). For brevity, we use the notation ω∗(t) = ω(t)[x1 := u1, . . . , xn := un].
Note that ω∗(t) : ω(σ).

By the generation lemma for t : σ there is a type σ′ such that σ′ =β σ and FTV(σ′) ⊆
FTV(t) and one of the cases below holds. Note that ω is closed for σ′ because it is closed
for σ and FTV(ω(t)) = ∅. By Lemma A.15 it suffices to show ω∗(t) ∈ Jσ′Kωξ .

If t = xσ
′

1 then ω(t)[x1 := u1] = (xω(σ′)
1)[x1 := u1] = u1 ∈ Jσ′Kωξ by assumption.

If t = n is a natural number and σ′ = nat then t ∈ JnatK by definition.
If t is a function symbol then the claim follows from Lemma A.10, Lemma A.11 or
Lemma A.12.
If t = λx : σ1.s then σ′ = σ1 → σ2 and s : σ2. Hence ω is closed for σ2. Let u ∈ Jσ1Kωξ .
By the inductive hypothesis ω∗(s)[x := u] ∈ Jσ2Kωξ . Hence ω∗(t) ∈ Jσ′Kωξ by Lemma A.8.
If t = Λα : κ.s then σ′ = ∀ατ and s : τ . Let ψ be a closed type constructor of
kind κ and let X ∈ Cψ. Let ω1 = ω[α := ψ] and ξ1 = ξ[α := X]. Then ω1 is closed
for τ and FTV(ω1(s)) = ∅. By the inductive hypothesis ω∗1(s) ∈ JτKω1

ξ1
. We have

ω∗1(s) = ω∗(s)[α := ψ] (assuming α chosen fresh such that ω(α) = α). Hence ω∗(t) ∈ JτKωξ
by Lemma A.8.

Ł. Czajka and C. Kop 12:25

If t = t1t2 then t1 : τ → σ′ and t2 : τ and FTV(τ) ⊆ FTV(t). Hence ω is closed for τ and
for τ → σ′. By the inductive hypothesis ω∗(t1) ∈ Jτ → σ′Kωξ and ω∗(t2) ∈ JτKωξ . We have
ω∗(t2) : ω(τ). Then by definition ω∗(t) = (ω∗(t1))(ω∗(t2)) ∈ Jσ′Kωξ .
If t = sψ then s : ∀ατ and σ′ = τ [α := ψ]. By the inductive hypothesis ω∗(s) ∈ J∀ατKωξ .
Because FTV(ω(t)) = ∅, the mapping ω is closed for ψ. So by Lemma A.14 we have
ω∗(t) = ω∗(s)ω(ψ) ∈ Jτ [α := ψ]Kωξ . J

I Theorem 4.4. If t : σ then t ∈ SN.

Proof. For closed terms t and closed types σ this follows from Lemma A.16, Lemma A.9
and property 1 of candidates (Definition A.3). For arbitrary terms and types, this follows
by closing the terms with an appropriate number of abstractions, and the types with
corresponding ∀-quantifiers. J

I Lemma 4.6. The only final interpretation terms of type nat are the natural numbers.

Proof. We show by induction on t that if t is a final interpretation term of type nat then t is
a natural number. Because t is closed and in normal form, if it is not a natural number then
it must have the form fσt1 . . . tn for a function symbol f. For concreteness assume f = ⊕.
Then n ≥ 2. Because t is closed, σ cannot be a type variable. It also cannot be an arrow or a
∀-type, because then t would contain a redex. So σ = nat. Then t1, t2 are final interpretation
terms of type nat, hence natural numbers by the inductive hypothesis. But then t contains a
redex. Contradiction. The case for f = ⊗ is parallel. If f ∈ {flatten, lift} and σ is closed,
then n ≥ 1 and in all cases t is not in normal form. J

A.2 Weak monotonicity proof
We want to show that if s � s′ then t[x := s] � t[x := s′]. A straightforward proof attempt
runs into a problem that, because of impredicativity of polymorphism, direct induction on
type structure is not possible. We adopt a method similar to Girard’s method of candidates
from the termination proof.

I Definition A.17. By induction on the kind κ of a type constructor τ we define the set Cτ
of all candidates of type constructor τ .

First assume κ = ∗, i.e., τ is a type. A set X of terms of type τ equipped with a binary
relation ≥X is a candidate of type τ if it satisfies the following properties:
1. if t ∈ X and t′ : τ and t′ t then t′ ∈ X,
2. if t1, t2 ∈ X then ◦τ t1t2 ∈ X for ◦ ∈ {⊕,⊗},
3. if t : nat then liftτ t ∈ X.
and the relation ≥X satisfies the following properties:
1. � ∩X ×X ⊆ ≥X ,
2. if t1 ≥X t2 and t′1 t1 (resp. t′2 t2) then t′1 ≥X t2 (resp. t1 ≥X t′2),
3. if t1 ≥X t′1 and t2 ≥X t′2 then ◦τ t1t2 ≥X ◦τ t′1t′2 for ◦ ∈ {⊕,⊗},
4. if t1 �nat t2 then liftτ (t1) ≥X liftτ (t2),
5. if t1 ≥X t2 then flattenτ (t1) �nat flattenτ (t2),
6. ≥X is reflexive and transitive on X.
The relation ≥X is a comparison candidate for X, and X is a candidate set.

Now assume κ = κ1 ⇒ κ2. A function f : Tκ1 ×
⋃
ξ∈Tκ1

Cξ →
⋃
ξ∈Tκ2

Cξ is a candidate of
type constructor τ if for every closed type constructor σ of kind κ1 and a candidate X ∈ Cσ
we have f(σ,X) ∈ Cτσ.

FSCD 2019

12:26 Polymorphic Higher-order Termination

I Lemma A.18. If σ =β σ
′ then Cσ = Cσ′ .

Proof. Induction on the kind of σ. J

I Definition A.19. Let ω be a mapping from type constructor variables to type constructors
(respecting kinds). The mapping ω extends in an obvious way to a mapping from type
constructors to type constructors. A mapping ω is closed for σ if ω(α) is closed for α ∈ FTV(σ)
(then ω(σ) is closed).

An ω-valuation is a mapping ξ on type constructor variables such that ξ(α) ∈ Cω(α).
For each type constructor σ, each mapping ω closed for σ, and each ω-valuation ξ, we

define JσKωξ by induction on σ:
JαKωξ = ξ(α) for a type constructor variable α,
JnatKωξ is the set of all terms t ∈ I such that t : nat; equipped with the relation ≥ξ,ωnat=�nat,
Jσ → τKωξ is the set of all terms t such that t : ω(σ → τ) and:

for all s ∈ JσKωξ we have t · s ∈ JτKωξ , and
if s1 ≥ξ,ωσ s2 then t · s1 ≥ξ,ωτ t · s2;

equipped with the relation ≥ξ,ωσ→τ defined by:
t1 ≥ξ,ωσ→τ t2 iff t1, t2 ∈ Jσ → τKωξ and for every s ∈ JσKωξ we have t1s ≥ξ,ωτ t2s,

J∀(α : κ)[σ]Kωξ is the set of all terms t such that t : ω(∀α[σ]) and:
for every closed type constructor ϕ of kind κ and every X ∈ Cϕ we have t ∗ ϕ ∈
JσKω[α:=ϕ]

ξ[α:=X];
equipped with the relation ≥ξ,ω∀α[σ] defined by:
t1 ≥ξ,ω∀(α:κ)[σ] t2 iff t1, t2 ∈ J∀(α : κ)[σ]Kωξ and for every closed type constructor ϕ of
kind κ and every X ∈ Cϕ we have t1ϕ ≥ξ[α:=X],ω[α:=ϕ]

σ t2ϕ,
JϕψKωξ = JϕKωξ (ω(ψ), JψKωξ),
Jλ(α : κ)ϕKωξ (ψ,X) = JϕKω[α:=ψ]

ξ[α:=X] for closed ψ ∈ Tκ and X ∈ Cψ.
In the above, if e.g. JψKωξ /∈ Cω(ψ) then JϕψKωξ is undefined.

Note that if t ∈ JσKωξ then t : ω(σ), and if t1 ≥ξ,ωσ t2 then t1, t2 ∈ JσKωξ . For brevity we
use JσKωξ to denote both the pair (JσKωξ ,≥ξ,ωσ) and its first element, depending on the context.
For a type τ , by ≥ξ,ωτ we always denote the second element of the pair JτKωξ . If τ is closed
then ξ and ω do not matter and we simply write ≥τ and JτK.

I Lemma A.20. If σ is a type constructor, ω is closed for σ, and ξ is an ω-valuation, then
JσKωξ ∈ Cω(σ).

Proof. Induction on σ. If σ = α then ξ(α) ∈ Cω(α) by definition. If σ = nat then this
follows from definitions.

Assume σ = σ1 → σ2. We check the properties of a candidate set.
1. The first property follows from the inductive hypothesis and property 2 of comparison

candidates.
2. Let t1, t2 ∈ JσKωξ . We need to show ◦ω(σ)t1t2 ∈ Jσ1 → σ2Kωξ .

Let s ∈ Jσ1Kωξ . Then ◦ω(σ)t1t2s ◦ω(σ2)(t1s)(t2s). Because ti ∈ Jσ1 → σ2Kωξ , we have
tis ∈ Jσ2Kωξ . By the inductive hypothesis Jσ2Kωξ ∈ Cω(σ2), so ◦ω(σ2)(t1s)(t2s) ∈ Jσ2Kωξ .
Hence ◦ω(σ2)t1t2s ∈ Jσ2Kωξ by property 1 of candidate sets.
Let s1 ≥ξ,ωσ1

s2. Then si ∈ Jσ1Kωξ . Because tj ∈ Jσ1 → σ2Kωξ , we have tjsi ∈ Jσ2Kωξ and
tjs1 ≥ξ,ωσ2

tjs2. By the inductive hypothesis ≥ξ,ωσ2
is a comparison candidate for Jσ2Kωξ .

Thus ◦ω(σ2)(t1s1)(t2s1) ≥ξ,ωσ2
◦ω(σ2)(t1s2)(t2s2) by property 3 of comparison candidates.

This suffices by property 2 of comparison candidates.

Ł. Czajka and C. Kop 12:27

3. Let t : nat. Then liftω(σ)t : ω(σ).
Let s ∈ Jσ1Kωξ . Then liftω(σ)ts liftω(σ2)t. By the inductive hypothesis liftω(σ2)t ∈
Jσ2Kωξ . Hence liftω(σ)ts ∈ Jσ2Kωξ by property 1 of candidate sets.
Let s1, s2 ∈ Jσ1Kωξ . By the inductive hypothesis ≥ξ,ωσ2

is a comparison candidate for Jσ2Kωξ .
We have liftω(σ2)t ≥ξ,ωσ2

liftω(σ2)t by the reflexivity of ≥ξ,ωσ2
(property 6 of comparison

candidates). This suffices by property 2 of comparison candidates, because liftω(σ)tsi
liftω(σ2)t.

Now we check the properties of a comparison candidate for Jσ1 → σ2Kωξ .
1. Suppose t1 � t2 with t1, t2 ∈ JσKωξ . Let s ∈ Jσ1Kωξ . Then t1s � t2s by the definition of �.

Hence t1s ≥ξ,ωσ2
t2s by the inductive hypothesis.

2. Follows from the inductive hypothesis and the already shown property 1 of candidate
sets for Jσ1 → σ2Kωξ .

3. Assume ti ≥ξ,ωσ t′i. Let s ∈ Jσ1Kωξ . We have ◦ω(σ)t1t2s ◦ω(σ2)(t1s)(t2s) and ◦ω(σ)t
′
1t
′
2s

◦ω(σ2)(t′1s)(t′2s). Since ti, t′i ∈ JσKωξ , we have tis ≥ξ,ωσ2
t′is and tis, t

′
is ∈ Jσ2Kωξ . By the

inductive hypothesis ◦(t1s)(t2s) ≥ξ,ωσ2
◦(t′1s)(t′2s), so ◦t1t2s ≥ξ,ωσ2

◦t′1t′2s by property 2 of
comparison candidates. This implies ◦t1t2 ≥ξ,ωσ ◦t′1t′2.

4. Follows from Lemma 4.22 and property 1 of comparison candidates.
5. Assume t1 ≥ξ,ωσ t2. Then flattenω(σ)ti flattenω(σ2)(ti(liftω(σ1)0)). By the

inductive hypothesis and property 3 of candidate sets liftω(σ1)0 ∈ Jσ1Kωξ . Hence
ti(liftω(σ1)0) ∈ Jσ2Kωξ and t1(liftω(σ1)0) ≥ξ,ωσ2

t2(liftω(σ1)0). Thus by the induct-
ive hypothesis flattenω(σ2)(t1(liftω(σ1)0)) �nat flattenω(σ2)(t2(liftω(σ1)0)). This
implies flattenω(σ)t1 �nat flattenω(σ)t2.

6. Follows directly from the inductive hypothesis.

If σ = ∀ατ then the proof is analogous to the case σ = σ1 → σ2. If σ = ϕψ or
σ = λ(α : κ)ϕ then the claim follows from the inductive hypothesis and Lemma A.18, like in
the proof of Lemma A.9. J

I Lemma A.21. ◦ ∈ J∀α.α→ α→ αK for ◦ ∈ {⊕,⊗}.

Proof. Let τ be a closed type and let X ∈ Cτ . Let ω(α) = τ and ξ(α) = X.
Let t1, t2 ∈ JαKωξ = X. Then ◦τ t1t2 ∈ JαKωξ by property 2 of candidate sets.
Let t′2 ∈ JαKωξ be such that t2 ≥ξ,ωα t′2, i.e., t2 ≥X t′2. By properties 6 and 3 of comparison

candidates we have we have ◦τ t1t2 ≥ξ,ωα ◦τ t1t′2. This shows ◦τ t1 ∈ Jα→ αKωξ .
Let t′1 ∈ JαKωξ be such that t1 ≥ξ,ωα t′1. Let u ∈ JαKωξ . By properties 6 and 3 of

comparison candidates we have ◦τ t1u ≥ξ,ωα ◦τ t′1u. Hence ◦τ t1 ≥ξ,ωα→α ◦τ t′1. This shows
◦τ ∈ Jα→ α→ αKωξ . J

I Lemma A.22. lift ∈ J∀α.nat→ αK.

Proof. Let τ be a closed type and let X ∈ Cτ . Let ω(α) = τ and ξ(α) = X. By property 4
of comparison candidates we have liftτs1 ≥ξ,ωα liftτs2 for all si : nat with s1 �nat s2. It
remains to show that liftτs ∈ JαKωξ = X for all s : nat. This follows from property 3 of
candidate sets. J

I Lemma A.23. flatten ∈ J∀α.α→ natK.

Proof. Follows from definitions and property 5 of comparison candidates. J

I Lemma A.24. For any type constructors σ, τ with α /∈ FTV(τ), a mapping ω closed for σ
and for τ , and an ω-valuation ξ, we have:

Jσ[α := τ]Kωξ = JσKω[α:=ω(τ)]
ξ[α:=JτKω

ξ
] .

FSCD 2019

12:28 Polymorphic Higher-order Termination

Proof. Let ω′ = ω[α := ω(τ)] and ξ′ = ξ[α := JτKωξ]. The proof by induction on σ is
analogous to the proof of Lemma A.13. The main difference is that in the case σ = σ1 → σ2
we need to show that if e.g. t ∈ Jσ[α := τ]Kωξ and s1 ≥ξ

′,ω′

σ1
s2 then ts1 ≥ξ

′,ω′

σ2
ts2. But

then s1 ≥ξ,ωσ1[α:=τ] s2 by the inductive hypothesis, so ts1 ≥ξ,ωσ2[α:=τ] ts2 by definition. Hence
ts1 ≥ξ

′,ω′

σ2
ts2 by the inductive hypothesis. J

I Lemma A.25. Let τ be a type constructor of kind κ. Assume ω is closed for ∀α[σ] and
for τ .
1. If t ∈ J∀(α : κ)[σ]Kωξ then t(ω(τ)) ∈ Jσ[α := τ]Kωξ .
2. If t1 ≥ξ,ω∀(α:κ)[σ] t2 then t1(ω(τ)) ≥ξ,ωσ[α:=τ] t2(ω(τ)).

Proof. Analogous to the proof of Lemma A.14, using Lemma A.20 and Lemma A.24. J

I Lemma A.26. If ω is closed for σ, σ′ and σ =β σ
′ then JσKωξ = Jσ′Kωξ and ≥ξ,ωσ = ≥ξ,ωσ′ .

Proof. Analogous to the proof of Lemma A.15, using Lemma A.24. J

For two replacements δ1 = γ1 ◦ω and δ2 = γ2 ◦ω (see Definition 4.9) and an ω-valuation ξ
we write δ1 ≥ξ,ωτ δ2 iff δ1(x) ≥ξ,ωτ δ2(x) for each x : τ .

I Lemma A.27. Assume t : σ and δ1 = γ1 ◦ ω, δ2 = γ2 ◦ ω are replacements and ξ an
ω-valuation such that δ1 ≥ξ,ω δ2 and ω is closed for σ and FTV(ω(t)) = ∅ and for all
xτ ∈ FTV(t) we have δi(x) ∈ JτKωξ . Then δi(t) ∈ JσKωξ and δ1(t) ≥ξ,ωσ δ2(t).

Proof. Induction on the structure of t. By the generation lemma for t : σ there is a type σ′
such that σ′ =β σ and FTV(σ′) ⊆ FTV(t) and one of the cases below holds. Note that ω is
closed for σ′, because it is closed for σ and FTV(ω(t)) = ∅. Hence by Lemma A.26 it suffices
to show δi(t) ∈ Jσ′Kωξ and δ1(t) ≥ξ,ωσ′ δ2(t).

If t = xσ
′ then δi(t) ∈ Jσ′Kωξ by assumption. Also δ1(t) ≥ξ,ωσ′ δ2(t) by assumption.

If t = n is a natural number and σ′ = nat then δi(t) = t and thus t ∈ JnatK and
δ1(t) ≥ξ,ωnat δ2(t) by definition and the reflexivity of ≥ξ,ωnat .
If t is a function symbol then the claim follows from Lemma A.21, Lemma A.22 or
Lemma A.23, and the reflexivity of ≥ξ,ω.
If t = λx : σ1.u then σ′ = σ1 → σ2 and u : σ2. Let s ∈ Jσ1Kωξ and δ′i = δi[x := s]. This
is well-defined because s : ω(σ1) and ω(x) has type ω(σ1). We have δ′1 ≥ξ,ω δ′2 by the
reflexivity of ≥ξ,ωσ1

(Lemma A.20 and property 6 of comparison candidates). Hence by the
inductive hypothesis δ′i(u) ∈ Jσ2Kωξ . We have δi(λx.u)s δ′i(u), so δi(λx.u)s ∈ Jσ2Kωξ by
Lemma A.20 and property 1 of candidate sets.
Let s1, s2 ∈ Jσ1Kωξ be such that s1 ≥ξ,ωσ1

s2. Let δ′i = δi[x := si]. We have δ1 ≥ξ,ω δ2.
Hence by the inductive hypothesis δ′1(u) ≥ξ,ωσ2

δ′2(u). We have δi(λx.u)si δ′i(u). Thus
δ1(t)s1 ≥ξ,ωσ2

δ2(t)s2 by Lemma A.20 and property 2 of comparison candidates.
Finally, we show δ1(t) ≥ξ,ωσ1→σ2

δ2(t). Let s ∈ Jσ1Kωξ and δ′i = δi[x := s]. We have
δ′1 ≥ξ,ω δ′2. By the inductive hypothesis δ′1(u) ≥ξ,ωσ2

δ′2(u). We have δi(λx.u)s δ′i(u).
Thus δ1(t)s ≥ξ,ωσ2

δ2(t)s by Lemma A.20 and property 2 of comparison candidates.
If t = Λα : κ.u then σ′ = ∀α[τ] and u : τ . Let ψ be a closed type constructor of
kind κ and let X ∈ Cψ. Let ω′ = ω[α := ψ] and ξ′ = ξ[α := X]. Then ω′ is closed
for τ and FTV(ω′(u)) = ∅. Let δ′i = γi ◦ ω′. By the inductive hypothesis δ′i(u) ∈
JτKω

′

ξ′ and δ′1(u) ≥ξ′,ω′

τ δ′2(u). We have δi(Λα.u)ψ δ′i(u). Hence δi(Λα.u)ψ ∈ JτKω
′

ξ′

by Lemma A.20 and property 1 of candidate sets. Thus δi(Λα.u) ∈ J∀α[τ]Kωξ . Also
δ1(Λα.u)ψ ≥ξ′,ω′

τ δ2(Λα.u)ψ by Lemma A.20 and property 2 of comparison candidates.
Thus δ1(Λα.u) ≥ξ

′,ω′

∀α[τ] δ2(Λα.u).

Ł. Czajka and C. Kop 12:29

If t = t1t2 then t1 : τ → σ′ and t2 : τ and FTV(τ) ⊆ FTV(t). Hence ω is closed for τ
and for τ → σ′. By the inductive hypothesis δi(t1) ∈ Jτ → σ′Kωξ and δi(t2) ∈ JτKωξ
and δ1(t1) ≥ξ,ωτ→σ′ δ2(t1) and δ1(t2) ≥ξ,ωτ δ2(t2). By the definition of Jτ → σ′Kωξ we have
δi(t) = δi(t1)δi(t2) ∈ Jσ′Kωξ , and δ1(t1)δ1(t2) ≥ξ,ωσ′ δ1(t1)δ2(t2). By the definition of ≥ξ,ωτ→σ′

we have δ1(t1)δ2(t2) ≥ξ,ωσ′ δ2(t1)δ2(t2). Hence δ1(t) ≥ξ,ωσ′ δ2(t) by the transitivity of ≥ξ,ωσ′ .
If t = sψ then s : ∀α[τ] and σ′ = τ [α := ψ]. By the inductive hypothesis δi(s) ∈ J∀α[τ]Kωξ
and δ1(s) ≥ξ,ω∀α[τ] δ2(s). Because FTV(ω(t)) = ∅, the mapping ω is closed for ψ. So by
Lemma A.25 we have δi(t) = δi(s)ω(ψ) ∈ Jτ [α := ψ]Kωξ and δ1(t) ≥ξ,ωτ [α:=ψ] δ2(t). J

I Corollary A.28. If t is closed and t : σ then t ∈ JσK.

I Lemma A.29. If σ is a closed type and t1 ≥σ t2 then t1 �σ t2.

Proof. By coinduction. By Lemma A.26 we may assume that σ is in β-normal form. The
case σ = α is impossible because σ is closed. If σ = nat then ≥nat = �nat.

Assume σ = σ1 → σ2. Let u : σ1 be closed. By Corollary A.28 we have u ∈ Jσ1K. Hence
t1u ≥σ2 t2u. By the coinductive hypothesis t1u �σ2 t2u. This implies t1 �σ t2.

Assume σ = ∀(α : κ)τ . Let ϕ be a closed type constructor of kind κ. By Lemma A.20 we
have JϕK ∈ Cϕ. By the definition of ≥∀ατ and Lemma A.24 we have t1ϕ ≥τ [α:=ϕ] t2ϕ. Note
that τ [α := ϕ] is still closed. Hence by the coinductive hypothesis t1ϕ �τ [α:=ϕ] t2ϕ. This
implies t1 �σ t2. J

I Corollary A.30. If σ is a closed type then ≥σ = �σ.

Proof. Follows from Lemma A.29, Lemma A.20 and property 1 of comparison candidates. J

I Lemma 4.26 (Weak monotonicity). If s �σ s′ then t[x := s] �τ t[x := s′].

Proof. It suffices to show this when s, s′, t[x := s], t[x := s′] and σ, τ are all closed. Assume
s �σ s′. Then s ≥σ s′ by Corollary A.30. Thus t[x := s] ≥τ t[x := s′] follows from
Lemma A.27. Hence t[x := s] �τ t[x := s′] by Corollary A.30. J

A.3 Proofs for Section 6
I Lemma 6.5. For all types σ, terms s, t of type σ and natural numbers n > 0:
1. s⊕σ t � s and s⊕σ t � t;
2. s⊕σ (liftσn) � s and (liftσn)⊕σ t � t.

Proof. It suffices to prove this for closed s, t and closed σ in β-normal form.
1. By coinduction we show (s⊕ t)u1 . . . um �σ su1 . . . um for closed u1, . . . , um. The second

case is similar.
First note that (s⊕ t)u1 . . . um ∗ su1 . . . um ⊕ tu1 . . . um.
If σ = nat then ((s⊕ t)u1 . . . um)↓ = (su1 . . . um)↓+ (tu1 . . . um)↓ ≥ (su1 . . . um)↓. Hence
(s⊕ t)u1 . . . um) �nat su1 . . . um.
If σ = τ1 → τ2 then by the coinductive hypothesis (s⊕ t)u1 . . . umq �τ2 su1 . . . umq for
any q ∈ Ifτ1

. Hence (s⊕ t)u1 . . . um �σ su1 . . . um.
If σ = ∀(α : κ)[τ] then by the coinductive hypothesis (s ⊕ t)u1 . . . umξ �σ′ su1 . . . umξ

for any closed ξ ∈ Tκ, where σ′ = τ [α := ξ]. Hence (s⊕ t)u1 . . . um �σ su1 . . . um.
2. By coinduction we show (s⊕ (liftn))u1 . . . um �σ su1 . . . um for closed u1, . . . , um. The

second case is similar.
Note that (s⊕ (liftn))u1 . . . um ∗ su1 . . . um ⊕ n. From this the case σ = nat follows.
The other cases follow from the coinductive hypothesis, like in the first point above. J

FSCD 2019

12:30 Polymorphic Higher-order Termination

I Lemma 6.3. For all types σ and all terms s, t, u of type σ, we have:
1. s⊕σ t ≈ t⊕σ s and s⊗σ t ≈ t⊗σ s;
2. s⊕σ (t⊕σ u) ≈ (s⊕σ t)⊕σ u and s⊗σ (t⊗σ u) ≈ (s⊗σ t)⊗σ u;
3. s⊗σ (t⊕σ u) ≈ (s⊗σ t)⊕σ (s⊗σ u);
4. (liftσ0)⊕σ s ≈ s and (liftσ1)⊗σ s ≈ s.

Proof. The proof is again analogous to the proof of Lemma 6.5. For instance, for closed s, t
and closed σ in β-normal form, we show by coinduction that (s⊕t)w1 . . . wn � (t⊕s)w1 . . . wn
for closed w1, . . . , wn (and then the same with �). J

I Lemma 6.4. 1. liftσ(n+m) ≈σ (liftσn)⊕σ (liftσn).
2. liftσ(nm) ≈σ (liftσn)⊗σ (liftσn).
3. flattenσ(liftσ(n)) ≈ n.

Proof. It suffices to show this for closed σ in β-normal form. For the first two points, one
proves by induction on σ that (liftσ(n + m))↓ = (liftσn ⊕σ liftσn)↓ (analogously for
multiplication). This suffices by Corollary 4.19 and the reflexivity of ≈.

For the third point, one proceeds by induction on σ. For example, if σ = σ1 → σ2 then
flattenσ(liftσ(n)) ∗ flattenσ2((λx.liftσ2n)(liftσ10)) flattenσ2(liftσ1n). Then
the claim follows from the inductive hypothesis and Lemma 4.18. J

Ł. Czajka and C. Kop 12:31

B Proving the inequalities in Section 7

The system IPC2 can be seen as a PFS with the following type constructors:

ΣTκ = { ⊥ : ∗, or : ∗ ⇒ ∗ ⇒ ∗, and : ∗ ⇒ ∗ ⇒ ∗, ∃ : (∗ ⇒ ∗)⇒ ∗}

We also have the following function symbols:

@ : ∀α∀β.(α→ β)→ α→ β ε : ∀α.⊥ → α

tapp : ∀α : ∗ ⇒ ∗.∀β.(∀β[αβ])→ αβ pr1 : ∀α∀β.andαβ → α

pair : ∀α∀β.α→ β → andαβ pr2 : ∀α∀β.andαβ → β

case : ∀α∀β∀γ.orαβ → (α→ γ)→ (β → γ)→ γ in1 : ∀α∀β.α→ orαβ
let : ∀α : ∗ ⇒ ∗.∀β.(∃(α))→ (∀γ.αγ → β)→ β in2 : ∀α∀β.β → orαβ
ext : ∀α : ∗ ⇒ ∗.∀β.αβ → ∃(α)

The following are the core rules (β-reductions):

@σ,τ (λx.s, t) −→ s[x := t] caseσ,τ,ρ(in1
σ,τ (u), λx.s, λy.t) −→ s[x := u]

tappλα.σ,τ (Λα.s) −→ s[α := τ] caseσ,τ,ρ(in2
σ,τ (u), λx.s, λy.t) −→ t[x := u]

pr1
σ,τ (pairσ,τ (s, t)) −→ s letϕ,ρ(extϕ,τ (s),Λα.λx : ϕα.t) −→ t[α := τ][x := s]

pr2
σ,τ (pairσ,τ (s, t)) −→ t

Then the next rules simplify proofs from contradiction:

ετ (ε⊥(s)) −→ ετ (s)
pr1
σ,τ (εandσ τ (s)) −→ εσ(s)

pr2
σ,τ (εandσ τ (s)) −→ ετ (s)

@σ,τ (εσ→τ (s), t) −→ ετ (s)
tappϕ,τ (ε∀α.ϕα(s)) −→ εϕτ (s)

caseσ,τ,ρ(εorσ τ (u), λx : σ.s, λy : τ.t) −→ ερ(u)
letϕ,ρ(ε∃(ϕ)(s),Λα.λx : ϕα.t) −→ ερ(s)

When a case occurs in a first argument, then it is shifted to the root of the term.

ερ(caseσ,τ,⊥(u, λx : σ.s, λy : τ.t)) −→ caseσ,τ,ρ(u, λx : σ.ερ(s), λy : τ.ερ(t))
@ρ,π(caseσ,τ,ρ→π(u, λx : σ.s, λy : τ.t), v) −→ caseσ,τ,π(u, λx : σ.@ρ,π(s, v), λy : τ.@ρ,π(t, v))
tappϕ,π(caseσ,τ,∀α.ϕα(u, λx : σ.s, λy : τ.t)) −→ caseσ,τ,ϕπ(u, λx : σ.tappϕ,π(s), λy : τ.tappϕ,π(t))
pr1
ρ,π(caseσ,τ,and ρ π(u, λx : σ.s, λy : τ.t)) −→ caseσ,τ,ρ(u, λx : σ.pr1

ρ,π(s), λy : τ.pr1
ρ,π(t))

pr2
ρ,π(caseσ,τ,and ρ,π(u, λx : σ.s, λy : τ.t)) −→ caseσ,τ,π(u, λx : σ.pr2

ρ,π(s), λy : τ.pr2
ρ,π(t))

caseρ,π,ξ(caseσ,τ,or ρ π(u, λx : σ.s, λy : τ.t), λz : ρ.v, λa : π.w) −→
caseσ,τ,ξ(u, λx : σ.caseρ,π,ξ(s, λz : ρ.v, λa : π.w), λy : τ.caseρ,π,ξ(t, λz : ρ.v, λa : π.w))

letϕ,ρ(caseσ,τ,∃ϕ(u, λx : σ.s, λy : τ.t), v) −→
caseσ,τ,ρ(u, λx : σ.letϕ,ρ(s, v), λy : τ.letϕ,ρ(t, v))

And the same happens for the let:

ετ (letϕ,⊥(s,Λα.λx : ϕα.t)) −→ letϕ,τ (s,Λα.λx : ϕα.ετ (t))
@τ,ρ(letϕ,τ→ρ(s,Λα.λx : ϕα.t), u) −→ letϕ,ρ(s,Λα.λx : ϕα.@τ,ρ(t, u))
tappψ,ρ(letϕ,∀β[ψβ](s,Λα.λx : ϕα.t)) −→ letϕ,ψρ(s,Λα.λx : ϕα.tappψ,ρ(t))
pr1
τ,ρ(letϕ,and τ,ρ(s,Λα.λx : ϕα.t)) −→ letϕ,τ (s,Λα.λx : ϕα.pr1

τ,ρ(t))
pr2
τ,ρ(letϕ,and τ ρ(s,Λα.λx : ϕα.t)) −→ letϕ,ρ(s,Λα.λx : ϕα.pr2

τ,ρ(t))
caseτ,ρ,π(letϕ,or τ ρ(s,Λα.λx : ϕα.t), λx : τ.u, λy : ρ.v) −→

letϕ,π(s,Λα.λx : ϕα.caseτ,ρ,π(t, λx : τ.u, λy : ρ.v))
letψ,ρ(letϕ,∃ψ(s,Λα.λx : ϕα.t), u) −→ letϕ,ρ(s,Λα.λx : ϕα.letψ,ρ(t, u))

FSCD 2019

12:32 Polymorphic Higher-order Termination

It is this last group of rules that is not oriented by our method. For all other rules ` −→ r

we have J`K � JrK, as demonstrated below.
We will use the fact that β-reduction provides the derived reduction rules for πi and let.

I Lemma B.1. πi(〈t1, t2〉) ∗β ti and let [τ, t] be [α, x] in s ∗β s[α := τ][x := t].

In the proofs below, we will often use that lift(n) ⊗ s ⊕ t � s if n ≥ 1, which holds
because lift(n)⊗ s⊕ t ≈ lift(1)⊗ s⊕ (lift(n− 1)⊗ s⊕ t) ≈ s⊕ (lift(n− 1)⊗ s⊕ t) � s,
using the calculation rules. Having this, the core rules and the contradiction simplifications
are all quite easy due to the choice of J :

J@σ,τ (λx.s, t)K � Js[x := t]K
We have J@σ,τ (λx : σ.s, t)K ∗β liftJτK(2)⊗((λx : JσK.JsK) ·JtK)⊕liftJτK(〈something〉⊕
1) lift(2) ⊗ JsK[x := JtK] ⊕ lift(〈something〉 ⊕ 1) � JsK[x := JtK], which equals
Js[x := t]K by Lemma 5.6.
Jtappλα.σ,τ (Λα.s)K � Js[α := τ]K
We have Jtappλα.σ,τ (Λα.s)K ∗β lift(λα.JσK)JτK(2)⊗ ((Λα.JsK)∗β)⊕lift(λα.JσK)JτK(1)
lift(2)⊗ JsK[α := JτK]⊕ lift(1) � JsK[α := JτK] = Js[α := τ]K, using Lemma 5.6.
Jpr1

σ,τ (pairσ,τ (s, t))K � JsK
We have Jpairσ,τ (s, t)K ∗β 〈JsK, JtK〉 ⊕ liftJσK×JτK(flattenJσK(JsK) ⊕ flattenJτK(JtK))
and therefore Jpr1

α,β(pairα,β(s, t))K ∗β liftJσK(2) ⊗ π1(〈JsK, JtK〉 ⊕ 〈something〉) ⊕
liftJσK(1) � π1(〈JsK, JtK〉)⊕ liftJσK(1), which � JsK by Lemma B.1.
Jpr2

σ,τ (pairσ,τ (s, t))K � JtK
Analogous to the inequality above.
Jcaseσ,τ,ρ(in1

σ,τ (u), λx.s, λy.t)K � Js[x := u]K
Write A := liftJσK×JτK(flattenJσK(JuK)); then Jin1

σ,τ (u)K = 〈JuK, liftJτK(1)〉 ⊕ A. Let
B := flattenJσK×JτK(〈JuK, liftJτK(1)〉 ⊕ A) and C := Jλy.tK · π2(〈JuK, liftJτK(1)〉 ⊕ A).
Then we can write: Jcaseσ,τ,ρ(in1

σ,τ (u), λx.s, λy.t)K = liftJρK(2) ⊕ liftJρK(3 ⊗ B) ⊕
liftJρK(B⊕1)⊗(Jλx.sK ·π1(〈JuK, liftJτK(1)〉⊕A)⊕C). By splitting additive terms, dis-
tribution, neutrality of 1 and absolute positiveness, this � Jλx.sK ·π1(〈JuK, liftτ (1)〉) ∗
Jλx.sK · JuK (by Lemma B.1), = (λx.JsK) · JuK ∗β JsK[x := JuK] = Js[x := u]K by Lemma
5.6.
Jcaseσ,τ,ρ(in2

σ,τ (u), λx.s, λy.t)K � Js[x := u]K.
Analogous to the inequality above.
Jletϕ,ρ(extϕ,τ (s),Λα.λx : ϕα.t)K � Jt[α := τ][x := s]K.
We have Jextϕ,τ (s)K � [JτK, JsK] by absolute positiveness. Therefore, using monotonicity,
Jletϕ,ρ(extϕ,τ (s),Λα.λx : JϕKα.t)K � liftJρK(2)⊗ (letJρK [JτK, JsK] be [[α, x]] in JΛα.λx :
ϕα.tK ∗ α · x) ⊕ 〈something〉 ⊕ liftJρK(1). Again by absolute positiveness, this �
letJρK [JτK, JsK] be [[α, x]] in JΛα.λx : JϕKα.tK ∗ α · x letJρK [JτK, JsK] be [[α, x]] in JtK.
By Lemma B.1, this term � JtK[α := JτK][x := JsK]. We complete by Lemma 5.6.

Jετ (ε⊥(s))K � Jετ (s)K.
We have Jετ (ε⊥(s))K = liftJτK(2 ⊗ liftnat(2 ⊗ JsK ⊕ 1) ⊕ 1) ≈ liftJτK(4 ⊗ JsK ⊕ 3) �
liftJτK(2⊗ JsK⊕ 1) = Jετ (s)K.
J@σ,τ (εσ→τ (s), t)K � Jετ (s)K.
We have J@σ,τ (εσ→τ (s), t)K = liftJτK(2)⊗ (liftJσK→JτK(2⊗ JsK⊕ 1) · JtK) ⊕
liftJτK(〈something〉⊕1) � liftJσK→JτK(2⊗ JsK⊕1) · JtK liftJτK(2⊗ JsK⊕1) = Jετ (s)K.
Jtappϕ,τ (ε∀α.ϕα(s))K � Jεϕτ (s)K
We have Jtappϕ,τ (ε∀α.ϕα(s))K = liftJϕKJτK(2) ⊗ (lift∀α.JϕKα(2 ⊗ JsK ⊕ 1) ∗ JτK) ⊕
liftJϕKJτK(1) � lift∀α.JϕKα(2 ⊗ JsK ⊕ 1) ∗ JτK = (Λα.liftJϕKα(2 ⊗ JsK ⊕ 1)) ∗ JτK
liftJϕKJτK(2⊗ JsK⊕ 1) = liftJϕτK(2⊗ JsK⊕ 1) = Jεϕτ (s)K

Ł. Czajka and C. Kop 12:33

Jpr1
σ,τ (εandσ τ (s))K � Jεσ(s)K

We have Jpr1
σ,τ (εandσ τ (s))K = liftJσK(2)⊗ π1(liftJσK×JτK(2⊗ JsK⊕ 1))⊕ liftJσK(1) �

π1(liftJσK×JτK(2 ⊗ JsK ⊕ 1)) = lift∀p.(JσK→JτK→p)→p(2 ⊗ JsK ⊕ 1)) ∗ JσK · (λxy.x) =
(Λp.λf.liftp(2⊗ JsK⊕ 1)) ∗ JσK · (λxy.x) ∗ liftJσK(2⊗ JsK⊕ 1) = Jεσ(s)K.
Jpr2

σ,τ (εandσ τ (s))K � Jετ (s)K
Analogous to the inequality above.
Jcaseσ,τ,ρ(εorσ τ (u), λx : σ.s, λy : τ.t)K � Jερ(u)K.
We have Jcaseσ,τ,ρ(εorσ τ (u), λx.s, λy.t)K =
liftJρK(2) ⊕ liftJρK(3 ⊗ flattenJσK×JτK(liftJσK×JτK(2 ⊗ JuK ⊕ 1))) ⊕ 〈something〉 �
liftJρK(3⊗ flattenJσK×JτK(liftJσK×JτK(2⊗ JuK⊕ 1))) �
liftJρK(flattenJσK×JτK(liftJσK×JτK(2 ⊗ JuK ⊕ 1))) ≈ liftJρK(2 ⊗ JuK ⊕ 1) = Jερ(u)K
because flattenσ(liftσ(n)) ≈ n for all σ, n.
Jletϕ,ρ(ε∃(ϕ)(s),Λα.λx : ϕα.t)K � Jερ(s)K.
Jletϕ,ρ(ε∃(ϕ)(s),Λα.λx.t)K = liftJρK(2)⊗ (letJρK liftΣα.JϕKα(2⊗ JsK⊕ 1) be [[α, x]] in
(Λα.λx.JtK)∗α·x)⊕〈something〉⊕liftJρK(1) � letJρK liftΣα.JϕKα(2⊗JsK⊕1) be [[α, x]] in
JtK = lift∀p.(∀α.JϕKα→p)→p(2⊗JsK⊕1)∗JρK·(Λα.λx.JtK) ∗ liftJρK(2⊗JsK⊕1) = Jερ(s)K.

Unfortunately, the rules where case is shifted to the root are rather more complicated,
largely due to the variable multiplication in J (case) – which we had to choose because these
rules may duplicate variables.

Jερ(caseσ,τ,⊥(u, λx : σ.s, λy : τ.t))K � Jcaseσ,τ,ρ(u, λx : σ.ερ(s), λy : τ.ερ(t))K
On the left-hand side, we have:

Jερ(caseσ,τ,⊥(u, λx : σ.s, λy : τ.t))K ≈
liftJρK(2⊗ (2 ⊕

3⊗ flattenJσK×JτK(JuK) ⊕
(flattenJσK×JτK(JuK)⊕ 1)⊗ (JsK[x := π1(JuK)]⊕ JtK[y := π2(JuK)])) ⊕

1) ≈
liftJρK(1⊕ 4 ⊕

6⊗ flattenJσK×JτK(JuK) ⊕
(2⊗ flattenJσK×JτK(JuK)⊕ 2)⊗ (JsK[x := π1(JuK)]⊕ JtK[y := π2(JuK)])) ≈

liftJρK(5) ⊕
liftJρK(6⊗ flattenJσK×JτK(JuK)) ⊕
liftJρK((2⊗ flattenJσK×JτK(JuK)⊕ 2)⊗ (JsK[x := π1(JuK)]⊕ JtK[y := π2(JuK)]))

On the right-hand side, we have:

Jcaseσ,τ,ρ(u, λx : σ.ερ(s), λy : τ.ερ(t))K ≈
liftJρK(2) ⊕

liftJρK(3⊗ flattenJσK×JτK(JuK)) ⊕
liftJρK(flattenJσK×JτK(JuK)⊕ 1) ⊗

(liftJρK(2⊗ JsK⊕ 1)[x := π1(JuK)]⊕ liftJρK(2⊗ JtK⊕ 1)[y := π2(JuK)]) ≈
liftJρK(2) ⊕

liftJρK(3⊗ flattenJσK×JτK(JuK)) ⊕
liftJρK((flattenJσK×JτK(JuK)⊕ 1) ⊗

(2⊗ JsK[x := π1(JuK)]⊕ 1⊕ 2⊗ JtK[y := π2(JuK)]⊕ 1)) ≈
liftJρK(2) ⊕

liftJρK(3⊗ flattenJσK×JτK(JuK)) ⊕
liftJρK((2⊗ flattenJσK×JτK(JuK)⊕ 2)⊗ (JsK[x := π1(JuK)]⊕ JtK[y := π2(JuK)]) ⊕
liftJρK((flattenJσK×JτK(JuK)⊕ 1)⊗ (1⊕ 1)) ≈

FSCD 2019

12:34 Polymorphic Higher-order Termination

liftJρK(2) ⊕
liftJρK(3⊗ flattenJσK×JτK(JuK)) ⊕
liftJρK((2⊗ flattenJσK×JτK(JuK)⊕ 2)⊗ (JsK[x := π1(JuK)]⊕ JtK[y := π2(JuK)])) ⊕
liftJρK(2⊗ flattenJσK×JτK(JuK)) ⊕
liftJρK(2) ≈

liftJρK(4) ⊕
liftJρK(5⊗ flattenJσK×JτK(JuK)) ⊕
liftJρK((2⊗ flattenJσK×JτK(JuK)⊕ 2)⊗ (JsK[x := π1(JuK)]⊕ JtK[y := π2(JuK)]))

By absolute positiveness, it is clear that the rule is oriented with �.
J@ρ,π(caseσ,τ,ρ→π(u, λx : σ.s, λy : τ.t), v)K � Jcaseσ,τ,π(u, λx : σ.@ρ,π(s, v), λy : τ.@ρ,π(t, v))K
On the left-hand side, we have:

J@ρ,π(caseσ,τ,ρ→π(u, λx : σ.s, λy : τ.t), v)K ≈
liftJπK(2)⊗ (

(liftJρK→JπK(2)⊕ liftJρK→JπK(3⊗ flattenJσK×JτK(JuK)) ⊕
liftJρK→JπK(flattenJσK×JτK(JuK)⊕ 1)⊗ (JsK[x := π1(JuK)]⊕ JtK[y := π2(JuK)])

) · JvK
)⊕ liftJπK(

flattenJσK(JvK) ⊕
flattenJσK→JτK(

liftJρK→JπK(2)⊕ liftJρK→JπK(3⊗ flattenJσK×JτK(JuK)) ⊕
liftJρK→JπK(flattenJσK×JτK(JuK)⊕ 1)⊗ (JsK[x := π1(JuK)]⊕ JtK[y := π2(JuK)])

)⊗ flattenJσK(JvK)⊕ 1
)

Using that for ◦ ∈ {⊕,⊗} we always have (s◦t)·v ≈ (s·v)◦(t·v) as well as liftα→β(s)·v ≈
liftβ(s), and that always flattenα(liftα(s)) ≈ s), this term ≈

liftJπK(2)⊗ (
(liftJπK(2)⊕ liftJπK(3⊗ flattenJσK×JτK(JuK)) ⊕

liftJπK(flattenJσK×JτK(JuK)⊕ 1)⊗ (JsK[x := π1(JuK)] · JvK⊕ JtK[y := π2(JuK)] · JvK)
)

)⊕ liftJπK(
flattenJσK(JvK) ⊕
(2⊕ 3⊗ flattenJσK×JτK(JuK) ⊕

(flattenJσK×JτK(JuK)⊕ 1)⊗ flattenJσK→JτK(JsK[x := π1(JuK)]⊕ JtK[y := π2(JuK)])
)⊗ flattenJσK(JvK)⊕ 1

) ≈
liftJπK(4) ⊕

liftJπK(6⊗ flattenJσK×JτK(JuK)) ⊕
liftJπK(2⊗ flattenJσK×JτK(JuK))⊗ (JsK[x := π1(JuK)] · JvK⊕ JtK[y := π2(JuK)] · JvK) ⊕
liftJπK(2)⊗ (JsK[x := π1(JuK)] · JvK⊕ JtK[y := π2(JuK)] · JvK) ⊕
liftJπK(flattenJσK(JvK)) ⊕
liftJπK(2⊗ flattenJσK(JvK)) ⊕
liftJπK(3⊗ flattenJσK×JτK(JuK)⊗ flattenJσK(JvK)) ⊕
liftJπK(flattenJσK×JτK(JuK)⊗ flattenJσK(JvK) ⊗

flattenJσK→JτK(JsK[x := π1(JuK)]⊕ JtK[y := π2(JuK)])) ⊕
liftJπK(flattenJσK(JvK)⊗ flattenJσK→JτK((JsK[x := π1(JuK)]⊕ JtK[y := π2(JuK)]))) ⊕
liftJπK(1) ≈

Ł. Czajka and C. Kop 12:35

liftJπK(5) ⊕
liftJπK(6⊗ flattenJσK×JτK(JuK)) ⊕
liftJπK(3⊗ flattenJσK(JvK)) ⊕
liftJπK(3⊗ flattenJσK×JτK(JuK)⊗ flattenJσK(JvK)) ⊕
liftJπK(flattenJσK(JvK)⊗ flattenJσK→JτK(JsK[x := π1(JuK)])) ⊕
liftJπK(flattenJσK(JvK)⊗ flattenJσK→JτK(JtK[y := π2(JuK)])) ⊕
liftJπK(flattenJσK×JτK(JuK)⊗ flattenJσK(JvK)⊗ flattenJσK→JτK(JsK[x := π1(JuK)])) ⊕
liftJπK(flattenJσK×JτK(JuK)⊗ flattenJσK(JvK)⊗ flattenJσK→JτK(JtK[y := π2(JuK)])) ⊕
liftJπK(2)⊗ JsK[x := π1(JuK)] · JvK ⊕
liftJπK(2)⊗ JtK[y := π2(JuK)] · JvK ⊕
liftJπK(2⊗ flattenJσK×JτK(JuK))⊗ JsK[x := π1(JuK)] · JvK ⊕
liftJπK(2⊗ flattenJσK×JτK(JuK))⊗ JtK[y := π2(JuK)] · JvK

And on the right-hand side, we have:

Jcaseσ,τ,π(u, λx : σ.@ρ,π(s, v), λy : τ.@ρ,π(t, v))K ≈
liftJπK(2) ⊕

liftJπK(3⊗ flattenJσK×JτK(JuK)) ⊕
liftJπK(flattenJσK×JτK(JuK)⊕ 1) ⊗

((λx.J@ρ,π(s, v)K) · π1(JuK)⊕ (λy.J@ρ,π(t, v)K) · π2(JuK)) ≈
liftJπK(2) ⊕

liftJπK(3⊗ flattenJσK×JτK(JuK)) ⊕
liftJπK(flattenJσK×JτK(JuK)⊕ 1) ⊗

((λx.liftJπK(2)⊗ JsK · JvK⊕ liftJπK(flattenJρK(JvK) ⊕
flattenJρK→JπK(JsK)⊗ flattenJρK(JvK)⊕ 1)) · π1(JuK) ⊕

(λy.liftJπK(2)⊗ JtK · JvK⊕ liftJπK(flattenJρK(JvK) ⊕
flattenJρK→JπK(JtK)⊗ flattenJρK(JvK)⊕ 1)) · π2(JuK)

) ≈
liftJπK(2) ⊕

liftJπK(3⊗ flattenJσK×JτK(JuK)) ⊕
liftJπK(flattenJσK×JτK(JuK)⊕ 1) ⊗

(liftJπK(2)⊗ JsK[x := π1(JuK)] · JvK⊕ liftJπK(flattenJρK(JvK) ⊕
flattenJρK→JπK(JsK[x := π1(JuK)])⊗ flattenJρK(JvK)⊕ 1) ⊕

liftJπK(2)⊗ JtK[y := π2(JuK)] · JvK⊕ liftJπK(flattenJρK(JvK) ⊕
flattenJρK→JπK(JtK[y := π2(JuK)])⊗ flattenJρK(JvK)⊕ 1)

) ≈
liftJπK(2) ⊕

liftJπK(3⊗ flattenJσK×JτK(JuK)) ⊕
liftJπK(flattenJσK×JτK(JuK)⊕ 1) ⊗

(liftJπK(2)⊗ JsK[x := π1(JuK)] · JvK ⊕
liftJπK(flattenJρK(JvK)) ⊕
liftJπK(flattenJρK(JvK)⊗ flattenJρK→JπK(JsK[x := π1(JuK)])) ⊕
liftJπK(1) ⊕
liftJπK(2)⊗ JtK[y := π2(JuK)] · JvK ⊕
liftJπK(flattenJρK(JvK)) ⊕
liftJπK(flattenJρK(JvK)⊗ flattenJρK→JπK(JtK[y := π2(JuK)])) ⊕
liftJπK(1)

) ≈

FSCD 2019

12:36 Polymorphic Higher-order Termination

liftJπK(2) ⊕
liftJπK(3⊗ flattenJσK×JτK(JuK)) ⊕
liftJπK(flattenJσK×JτK(JuK)⊕ 1) ⊗

(liftJπK(2) ⊕
liftJπK(2⊗ flattenJρK(JvK)) ⊕
liftJπK(2)⊗ JsK[x := π1(JuK)] · JvK ⊕
liftJπK(2)⊗ JtK[y := π2(JuK)] · JvK ⊕
liftJπK(flattenJρK(JvK)⊗ flattenJρK→JπK(JsK[x := π1(JuK)])) ⊕
liftJπK(flattenJρK(JvK)⊗ flattenJρK→JπK(JtK[y := π2(JuK)]))

) ≈
liftJπK(2) ⊕

liftJπK(3⊗ flattenJσK×JτK(JuK)) ⊕
liftJπK(2⊗ flattenJσK×JτK(JuK)) ⊕
liftJπK(2⊗ flattenJσK×JτK(JuK)⊗ flattenJρK(JvK)) ⊕
liftJπK(2⊗ flattenJσK×JτK(JuK))⊗ JsK[x := π1(JuK)] · JvK ⊕
liftJπK(2⊗ flattenJσK×JτK(JuK))⊗ JtK[y := π2(JuK)] · JvK ⊕
liftJπK(flattenJσK×JτK(JuK)⊗ flattenJρK(JvK)⊗ flattenJρK→JπK(JsK[x := π1(JuK)])) ⊕
liftJπK(flattenJσK×JτK(JuK)⊗ flattenJρK(JvK)⊗ flattenJρK→JπK(JtK[y := π2(JuK)])) ⊕
liftJπK(2) ⊕
liftJπK(2⊗ flattenJρK(JvK)) ⊕
liftJπK(2)⊗ JsK[x := π1(JuK)] · JvK ⊕
liftJπK(2)⊗ JtK[y := π2(JuK)] · JvK ⊕
liftJπK(flattenJρK(JvK)⊗ flattenJρK→JπK(JsK[x := π1(JuK)])) ⊕
liftJπK(flattenJρK(JvK)⊗ flattenJρK→JπK(JtK[y := π2(JuK)]))

This we can reorder to:

liftJπK(4) ⊕
liftJπK(5⊗ flattenJσK×JτK(JuK)) ⊕
liftJπK(2⊗ flattenJρK(JvK)) ⊕
liftJπK(2⊗ flattenJσK×JτK(JuK)⊗ flattenJρK(JvK)) ⊕
liftJπK(flattenJρK(JvK)⊗ flattenJρK→JπK(JsK[x := π1(JuK)])) ⊕
liftJπK(flattenJρK(JvK)⊗ flattenJρK→JπK(JtK[y := π2(JuK)])) ⊕
liftJπK(flattenJσK×JτK(JuK)⊗ flattenJρK(JvK)⊗ flattenJρK→JπK(JsK[x := π1(JuK)])) ⊕
liftJπK(flattenJσK×JτK(JuK)⊗ flattenJρK(JvK)⊗ flattenJρK→JπK(JtK[y := π2(JuK)])) ⊕
liftJπK(2)⊗ JsK[x := π1(JuK)] · JvK ⊕
liftJπK(2)⊗ JtK[y := π2(JuK)] · JvK ⊕
liftJπK(2⊗ flattenJσK×JτK(JuK))⊗ JsK[x := π1(JuK)] · JvK ⊕
liftJπK(2⊗ flattenJσK×JτK(JuK))⊗ JtK[y := π2(JuK)] · JvK

Using absolute positiveness, it is clear that the inequality is oriented.
Jtappϕ,π(caseσ,τ,∀α.ϕα(u, λx : σ.s, λy : τ.t))K �
Jcaseσ,τ,ϕπ(u, λx : σ.tappϕ,π(s), λy : τ.tappϕ,π(t))K
On the left-hand side, we have

Jtappϕ,π(caseσ,τ,∀α.ϕα(u, λx.s, λy.t))K ≈
liftJϕπK(2)⊗ (

lift∀α.JϕKα(2)⊕ lift∀α.JϕKα(3⊗ flattenJσK×JτK(JuK))⊕
lift∀α.JϕKα(flattenJσK×JτK(JuK)⊕ 1)⊗ (JsK[x := π1(JuK)]⊕ JtK[y := π2(JuK)])

) ∗ JπK⊕ liftJϕπK(1) ≈

Ł. Czajka and C. Kop 12:37

liftJϕπK(4) ⊕
liftJϕπK(6⊗ flattenJσK×JτK(JuK))⊕
liftJϕπK(2)⊗ JsK[x := π1(JuK)] ∗ JπK ⊕
liftJϕπK(2)⊗ JtK[y := π2(JuK)] ∗ JπK ⊕
liftJϕπK(2⊗ flattenJσK×JτK(JuK))⊗ JsK[x := π1(JuK)] ∗ JπK ⊕
liftJϕπK(2⊗ flattenJσK×JτK(JuK))⊗ JtK[x := π2(JuK)] ∗ JπK ⊕
liftJϕπK(1) ≈

liftJϕπK(5) ⊕
liftJϕπK(6⊗ flattenJσK×JτK(JuK))⊕
liftJϕπK(2)⊗ JsK[x := π1(JuK)] ∗ JπK ⊕
liftJϕπK(2)⊗ JtK[y := π2(JuK)] ∗ JπK ⊕
liftJϕπK(2⊗ flattenJσK×JτK(JuK))⊗ JsK[x := π1(JuK)] ∗ JπK ⊕
liftJϕπK(2⊗ flattenJσK×JτK(JuK))⊗ JtK[x := π2(JuK)] ∗ JπK

On the right-hand side, we have:

Jcaseσ,τ,ϕπ(u, λx : σ.tappϕ,π(s), λy : τ.tappϕ,π(t))K ≈
liftJϕπK(2) ⊕

liftJϕπK(3⊗ flattenJσK×JτK(JuK)) ⊕
liftJϕπK(flattenJσK×JτK(JuK)⊕ 1) ⊗

(liftJϕπK(2)⊗ (JsK[x := π1(JuK)] ∗ JπK)⊕ liftJϕπK(1) ⊕
liftJϕπK(2)⊗ (JtK[x := π2(JuK)] ∗ JπK)⊕ liftJϕπK(1)) ≈

liftJϕπK(4) ⊕
liftJϕπK(5⊗ flattenJσK×JτK(JuK)) ⊕
liftJϕπK(flattenJσK×JτK(JuK)⊕ 1) ⊗

(liftJϕπK(2)⊗ (JsK[x := π1(JuK)] ∗ JπK) ⊕
liftJϕπK(2)⊗ (JtK[x := π2(JuK)] ∗ JπK)) ≈

liftJϕπK(4) ⊕
liftJϕπK(5⊗ flattenJσK×JτK(JuK)) ⊕
liftJϕπK(2)⊗ JsK[x := π1(JuK)] ∗ JπK ⊕
liftJϕπK(2)⊗ JtK[y := π2(JuK)] ∗ JπK ⊕
liftJϕπK(2⊗ flattenJσK×JτK(JuK))⊗ JsK[x := π1(JuK)] ∗ JπK ⊕
liftJϕπK(2⊗ flattenJσK×JτK(JuK))⊗ JtK[x := π2(JuK)] ∗ JπK

Again, it is clear that the required inequality holds.

Jpr1
ρ,π(caseσ,τ,and ρ π(u, λx : σ.s, λy : τ.t))K �

Jcaseσ,τ,ρ(u, λx : σ.pr1
ρ,π(s), λy : τ.pr1

ρ,π(t))K
On the left-hand side, we have:

Jpr1
ρ,π(caseσ,τ,and ρ π(u, λx.s, λy.t))K ≈

liftJρK(2)⊗ π1(
liftJρK×JπK(2) ⊕
liftJρK×JπK(3⊗ flattenJσK×JτK(JuK)) ⊕
liftJρK×JπK(flattenJσK×JτK(JuK)⊕ 1) ⊗

(JsK[x := π1(JuK)]⊕ JtK[y := π2(JuK)])
)⊕ liftJρK(1)

Taking into account that JρK× JτK is just shorthand notation for ∀p.(JρK→ JτK→ p)→ p,

FSCD 2019

12:38 Polymorphic Higher-order Termination

that π1(x) = x ∗ JρK · (λxy.x), and that liftσ→τ (x) · y ≈ liftτ (x), this term ≈

liftJρK(5) ⊕
liftJρK(6⊗ flattenJσK×JτK(JuK)) ⊕
liftJρK(2⊗ flattenJσK×JτK(JuK)⊕ 2)⊗ π1(JsK[x := π1(JuK)]) ⊕
liftJρK(2⊗ flattenJσK×JτK(JuK)⊕ 2)⊗ π1(JtK[y := π2(JuK)]) ≈

liftJρK(5) ⊕
liftJρK(6⊗ flattenJσK×JτK(JuK)) ⊕
liftJρK(2⊗ flattenJσK×JτK(2)⊗ π1(JsK[x := π1(JuK)]) ⊕
liftJρK(2⊗ flattenJσK×JτK(2)⊗ π1(JtK[y := π2(JuK)]) ⊕
liftJρK(2⊗ flattenJσK×JτK(JuK))⊗ π1(JsK[x := π1(JuK)]) ⊕
liftJρK(2⊗ flattenJσK×JτK(JuK))⊗ π1(JtK[y := π2(JuK)])

On the right-hand side, we have:

Jcaseσ,τ,ρ(u, λx : σ.pr1
ρ,π(s), λy : τ.pr1

ρ,π(t))K ≈
liftJρK(2) ⊕

liftJρK(3⊗ flattenJσK×JτK(JuK)) ⊕
liftJρK(flattenJσK×JτK(JuK)⊕ 1) ⊗

(liftJρK(2)⊗ π1(JsK)[x := π1(JuK)]⊕ liftJρK(1)⊕
liftJρK(2)⊗ π1(JtK)[y := π2(JuK)]⊕ liftJρK(1))

Following the definition of π1, we can pull the substitution inside π1, and rewrite this
term to:

liftJρK(2) ⊕
liftJρK(3⊗ flattenJσK×JτK(JuK)) ⊕
liftJρK(flattenJσK×JτK(JuK)⊕ 1) ⊗

(liftJρK(2)⊗ π1(JsK[x := π1(JuK)]) ⊕
liftJρK(2)⊗ π1(JtK[y := π2(JuK)])⊕ liftJρK(2)) ≈

liftJρK(4) ⊕
liftJρK(5⊗ flattenJσK×JτK(JuK)) ⊕
liftJρK(flattenJσK×JτK(JuK)⊕ 1) ⊗

(liftJρK(2)⊗ π1(JsK[x := π1(JuK)])⊕ liftJρK(2)⊗ π1(JtK[y := π2(JuK)])) ≈
liftJρK(4) ⊕

liftJρK(5⊗ flattenJσK×JτK(JuK)) ⊕
liftJρK(2)⊗ π1(JsK[x := π1(JuK)]) ⊕
liftJρK(2)⊗ π1(JtK[y := π2(JuK)]) ⊕
liftJρK(2⊗ flattenJσK×JτK(JuK)⊗ liftJρK(2)⊗ π1(JsK[x := π1(JuK)]) ⊕
liftJρK(2⊗ flattenJσK×JτK(JuK)⊗ liftJρK(2)⊗ π1(JtK[y := π2(JuK)])

This is once more oriented by absolute positiveness.
Jpr2

ρ,π(caseσ,τ,and ρ,π(u, λx : σ.s, λy : τ.t))K � Jcaseσ,τ,π(u, λx : σ.pr2
ρ,π(s), λy : τ.pr2

ρ,π(t))K
Analogous to the inequality above.
Jcaseρ,π,ξ(caseσ,τ,or ρ π(u, λx : σ.s, λy : τ.t), λz : ρ.v, λa : π.w)K �
Jcaseσ,τ,ξ(u, λx : σ.caseρ,π,ξ(s, λz : ρ.v, λa : π.w), λy : τ.caseρ,π,ξ(t, λz : ρ.v, λa : π.w))K
This is the longest of the inequalities. As before, we turn first to the left-hand side.

Jcaseρ,π,ξ(caseσ,τ,or ρ π(u, λx : σ.s, λy : τ.t), λz : ρ.v, λa : π.w)K ≈
J (case)JρK,JπK,JξK(J (case)JσK,JτK,JρK×JpiK(JuK, λx.JsK, λy.JtK), λz.JvK, λa.JwK) ≈
J (case)JρK,JπK,JξK(

liftJρK×JπK(2)⊕ liftJρK×JπK(3⊗ flattenJσK×JτK(JuK)) ⊕

Ł. Czajka and C. Kop 12:39

JsK[x := π1(JuK)]⊕ JtK[y := π2(JuK)] ⊕
liftJρK×JπK(flattenJσK×JτK(JuK))⊗ JsK[x := π1(JuK)]⊕
liftJρK×JπK(flattenJσK×JτK(JuK))⊗ JtK[y := π2(JuK)]

, λz.JvK, λa.JwK)
Once we start filling in the outer case interpretation, this is going to get very messy
indeed. So, we will use the following shorthand notation:
su = JsK[x := π1(JuK)]
tu = JtK[y := π2(JuK)]
A = liftJρK×JπK(2)⊕ liftJρK×JπK(3⊗ flattenJσK×JτK(JuK))⊕ su⊕ tu ⊕

liftJρK×JπK(flattenJσK×JτK(JuK))⊗ su ⊕
liftJρK×JπK(flattenJσK×JτK(JuK))⊗ tu

Then, the left-hand side ≈

J (case)JρK,JπK,JξK(A, λz.JvK, λa.JwK) ≈
liftJξK(2)⊕ liftJξK(3⊗ flattenJρK×JπK(A)) ⊕

JvK[z := π1(A)]⊕ JwK[a := π2(A)] ⊕
liftJξK(flattenJρK×JπK(A))⊗ JvK[z := π1(A)] ⊕
liftJξK(flattenJρK×JπK(A))⊗ JwK[a := π2(A)] ≈

liftJξK(2) ⊕
liftJξK(6) ⊕
liftJξK(9⊗ flattenJσK×JτK(JuK)) ⊕
liftJξK(3⊗ flattenJρK×JπK(su)) ⊕
liftJξK(3⊗ flattenJρK×JπK(tu)) ⊕
liftJξK(3⊗ flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(su)) ⊕
liftJξK(3⊗ flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(tu)) ⊕
JvK[z := π1(A)]⊕ JwK[a := π2(A)] ⊕
liftJξK(2)⊗ JvK[z := π1(A)] ⊕
liftJξK(3⊗ flattenJσK×JτK(JuK))⊗ JvK[z := π1(A)] ⊕
liftJξK(flattenJρK×JπK(su))⊗ JvK[z := π1(A)] ⊕
liftJξK(flattenJρK×JπK(tu))⊗ JvK[z := π1(A)] ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(su))⊗ JvK[z := π1(A)] ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(tu))⊗ JvK[z := π1(A)] ⊕
liftJξK(2)⊗ JwK[a := π2(A)] ⊕
liftJξK(3⊗ flattenJσK×JτK(JuK))⊗ JwK[a := π2(A)] ⊕
liftJξK(flattenJρK×JπK(su))⊗ JwK[a := π2(A)] ⊕
liftJξK(flattenJρK×JπK(tu))⊗ JwK[a := π2(A)] ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(su))⊗ JwK[a := π2(A)] ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(tu))⊗ JwK[a := π2(A)] ⊕

We can slightly shorten this term by combining parts, but the result is still quite long:

〈the left-hand side〉 ≈
liftJξK(8) ⊕

liftJξK(9⊗ flattenJσK×JτK(JuK)) ⊕
liftJξK(3⊗ flattenJρK×JπK(su)) ⊕
liftJξK(3⊗ flattenJρK×JπK(tu)) ⊕
liftJξK(3⊗ flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(su)) ⊕
liftJξK(3⊗ flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(tu)) ⊕
liftJξK(3)⊗ JvK[z := π1(A)] ⊕

FSCD 2019

12:40 Polymorphic Higher-order Termination

liftJξK(3⊗ flattenJσK×JτK(JuK))⊗ JvK[z := π1(A)] ⊕
liftJξK(flattenJρK×JπK(su))⊗ JvK[z := π1(A)] ⊕
liftJξK(flattenJρK×JπK(tu))⊗ JvK[z := π1(A)] ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(su))⊗ JvK[z := π1(A)] ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(tu))⊗ JvK[z := π1(A)] ⊕
liftJξK(3)⊗ JwK[a := π2(A)] ⊕
liftJξK(3⊗ flattenJσK×JτK(JuK))⊗ JwK[a := π2(A)] ⊕
liftJξK(flattenJρK×JπK(su))⊗ JwK[a := π2(A)] ⊕
liftJξK(flattenJρK×JπK(tu))⊗ JwK[a := π2(A)] ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(su))⊗ JwK[a := π2(A)] ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(tu))⊗ JwK[a := π2(A)]

Now, let us turn to the right-hand side.

Jcaseσ,τ,ξ(u, λx : σ.caseρ,π,ξ(s, λz : ρ.v, λa : π.w), λy : τ.caseρ,π,ξ(t, λz : ρ.v, λa : π.w))K ≈
J (case)σ,τ,ξ(JuK, λx.liftJξK(2)⊕ liftJξK(3⊗ flattenJρK×JπK(JsK)) ⊕

JvK[z := π1(JsK)]⊕ JwK[a := π2(JsK)] ⊕
liftJξK(flattenJρK×JπK(JsK))⊗ JvK[z := π1(JsK)] ⊕
liftJξK(flattenJρK×JπK(JsK))⊗ JwK[a := π2(JsK)],

λy.liftJξK(2)⊕ liftJξK(3⊗ flattenJρK×JπK(JtK)) ⊕
JvK[z := π1(JtK)]⊕ JwK[a := π2(JtK)] ⊕
liftJξK(flattenJρK×JπK(JtK))⊗ JvK[z := π1(JtK)] ⊕
liftJξK(flattenJρK×JπK(JtK))⊗ JwK[a := π2(JtK)])

For brevity, we introduce another shorthand notation: for a given term q:
Bq = liftJξK(2)⊕ liftJξK(3⊗ flattenJρK×JπK(q)) ⊕

JvK[z := π1(q)]⊕ JwK[a := π2(q)] ⊕
liftJξK(flattenJρK×JπK(q))⊗ JvK[z := π1(q)] ⊕
liftJξK(flattenJρK×JπK(q))⊗ JwK[a := π2(q)].

With this, we have:

〈the right-hand side〉 ≈
J (case)JσK,JτK,JξK(JuK, λx.BJsK, λy.BJtK) ≈
liftJξK(2)⊕ liftJξK(3⊗ flattenJσK×JτK(JuK)) ⊕
BJsK[x := π1(JuK)]⊕BJtK[x := π2(JuK)] ⊕
liftJξK(flattenJσK×JτK(JuK))⊗BJsK[x := π1(JuK)] ⊕
liftJξK(flattenJσK×JτK(JuK))⊗BJtK[x := π2(JuK)]

Note that x is a bound variable in s and y a bound variable in t; these variables do not
occur in Bq. So, we can rewrite the above term to:

〈the right-hand side〉 ≈
liftJξK(2)⊕ liftJξK(3⊗ flattenJσK×JτK(JuK)) ⊕
Bsu ⊕Btu ⊕
liftJξK(flattenJσK×JτK(JuK))⊗Bsu ⊕
liftJξK(flattenJσK×JτK(JuK))⊗Btu ≈

liftJξK(2) ⊕
liftJξK(3⊗ flattenJσK×JτK(JuK)) ⊕
liftJξK(2) ⊕
liftJξK(3⊗ flattenJρK×JπK(su)) ⊕
JvK[z := π1(su)]⊕ JwK[a := π2(su)] ⊕
liftJξK(flattenJρK×JπK(su))⊗ JvK[z := π1(su)] ⊕
liftJξK(flattenJρK×JπK(su))⊗ JwK[a := π2(su)] ⊕

Ł. Czajka and C. Kop 12:41

liftJξK(2) ⊕
liftJξK(3⊗ flattenJρK×JπK(tu)) ⊕
JvK[z := π1(tu)]⊕ JwK[a := π2(tu)] ⊕
liftJξK(flattenJρK×JπK(tu))⊗ JvK[z := π1(tu)] ⊕
liftJξK(flattenJρK×JπK(tu))⊗ JwK[a := π2(tu)] ⊕
liftJξK(2⊗ flattenJσK×JτK(JuK)) ⊕
liftJξK(3⊗ flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(su)) ⊕
liftJξK(flattenJσK×JτK(JuK))⊗ JvK[z := π1(su)] ⊕
liftJξK(flattenJσK×JτK(JuK))⊗ JwK[a := π2(su)] ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(su))⊗ JvK[z := π1(su)] ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(su))⊗ JwK[a := π2(su)] ⊕
liftJξK(2⊗ flattenJσK×JτK(JuK)) ⊕
liftJξK(3⊗ flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(tu)) ⊕
liftJξK(flattenJσK×JτK(JuK))⊗ JvK[z := π1(tu)] ⊕
liftJξK(flattenJσK×JτK(JuK))⊗ JwK[a := π2(tu)] ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(tu))⊗ JvK[z := π1(tu)] ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(tu))⊗ JwK[a := π2(tu)]

Here, we can do some further combinations. Let us denote:
vsu := JvK[z := π1(su)] = JvK[z := π1(JsK[x := π1(JuK)])]
wsu := JwK[a := π2(su)] = JwK[a := π2(JsK[x := π1(JuK)])]
vtu := JvK[z := π1(tu)] = JvK[z := π1(JtK[y := π2(JuK)])]
wtu := JwK[a := π1(tu)] = JwK[a := π2(JtK[y := π2(JuK)])]

Then:

〈the right-hand side〉 ≈
liftJξK(6) ⊕

liftJξK(7⊗ flattenJσK×JτK(JuK)) ⊕
liftJξK(3⊗ flattenJρK×JπK(su)) ⊕
liftJξK(3⊗ flattenJρK×JπK(tu)) ⊕
vsu⊕ wsu⊕ vtu⊕ wtu ⊕
liftJξK(flattenJρK×JπK(su))⊗ vsu ⊕
liftJξK(flattenJρK×JπK(su))⊗ wsu ⊕
liftJξK(flattenJρK×JπK(tu))⊗ vtu ⊕
liftJξK(flattenJρK×JπK(tu))⊗ wtu ⊕
liftJξK(3⊗ flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(su)) ⊕
liftJξK(flattenJσK×JτK(JuK))⊗ vsu ⊕
liftJξK(flattenJσK×JτK(JuK))⊗ wsu ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(su))⊗ vsu ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(su))⊗ wsu ⊕
liftJξK(3⊗ flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(tu)) ⊕
liftJξK(flattenJσK×JτK(JuK))⊗ vtu ⊕
liftJξK(flattenJσK×JτK(JuK))⊗ wtu ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(tu))⊗ vtu ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(tu))⊗ wtu

Now, if we strike out equal terms in the left-hand side and the right-hand side (after

FSCD 2019

12:42 Polymorphic Higher-order Termination

splitting additive terms where needed) the following inequality remains:

liftJξK(2) ⊕
liftJξK(2⊗ flattenJσK×JτK(JuK)) ⊕
liftJξK(3)⊗ JvK[z := π1(A)] ⊕
liftJξK(3⊗ flattenJσK×JτK(JuK))⊗ JvK[z := π1(A)] ⊕
liftJξK(flattenJρK×JπK(su))⊗ JvK[z := π1(A)] ⊕
liftJξK(flattenJρK×JπK(tu))⊗ JvK[z := π1(A)] ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(su))⊗ JvK[z := π1(A)] ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(tu))⊗ JvK[z := π1(A)] ⊕
liftJξK(3)⊗ JwK[a := π2(A)] ⊕
liftJξK(3⊗ flattenJσK×JτK(JuK))⊗ JwK[a := π2(A)] ⊕
liftJξK(flattenJρK×JπK(su))⊗ JwK[a := π2(A)] ⊕
liftJξK(flattenJρK×JπK(tu))⊗ JwK[a := π2(A)] ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(su))⊗ JwK[a := π2(A)] ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(tu))⊗ JwK[a := π2(A)] �

vsu⊕ wsu⊕ vtu⊕ wtu ⊕
liftJξK(flattenJρK×JπK(su))⊗ vsu ⊕
liftJξK(flattenJρK×JπK(su))⊗ wsu ⊕
liftJξK(flattenJρK×JπK(tu))⊗ vtu ⊕
liftJξK(flattenJρK×JπK(tu))⊗ wtu ⊕
liftJξK(flattenJσK×JτK(JuK))⊗ vsu ⊕
liftJξK(flattenJσK×JτK(JuK))⊗ wsu ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(su))⊗ vsu ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(su))⊗ wsu ⊕
liftJξK(flattenJσK×JτK(JuK))⊗ vtu ⊕
liftJξK(flattenJσK×JτK(JuK))⊗ wtu ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(tu))⊗ vtu ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(tu))⊗ wtu

But now note that A � su and A � tu. Therefore, by monotonicity, each term Li � Ri
below:

liftJξK(2) ⊕
liftJξK(2⊗ flattenJσK×JτK(JuK)) ⊕
liftJξK(3)⊗ JvK[z := π1(A)] ⊕
liftJξK(3⊗ flattenJσK×JτK(JuK))⊗ JvK[z := π1(A)] ⊕
liftJξK(flattenJρK×JπK(su))⊗ JvK[z := π1(A)] ⊕ (L1)
liftJξK(flattenJρK×JπK(tu))⊗ JvK[z := π1(A)] ⊕ (L2)
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(su))⊗ JvK[z := π1(A)] ⊕ (L3)
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(tu))⊗ JvK[z := π1(A)] ⊕ (L4)
liftJξK(3)⊗ JwK[a := π2(A)] ⊕
liftJξK(3⊗ flattenJσK×JτK(JuK))⊗ JwK[a := π2(A)] ⊕
liftJξK(flattenJρK×JπK(su))⊗ JwK[a := π2(A)] ⊕ (L5)
liftJξK(flattenJρK×JπK(tu))⊗ JwK[a := π2(A)] ⊕ (L6)
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(su))⊗ JwK[a := π2(A)] ⊕ (L7)
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(tu))⊗ JwK[a := π2(A)] (L8)
�
vsu⊕ wsu⊕ vtu⊕ wtu ⊕

liftJξK(flattenJρK×JπK(su))⊗ vsu ⊕ (R1)
liftJξK(flattenJρK×JπK(su))⊗ wsu ⊕ (R5)

Ł. Czajka and C. Kop 12:43

liftJξK(flattenJρK×JπK(tu))⊗ vtu ⊕ (R2)
liftJξK(flattenJρK×JπK(tu))⊗ wtu ⊕ (R6)
liftJξK(flattenJσK×JτK(JuK))⊗ vsu ⊕
liftJξK(flattenJσK×JτK(JuK))⊗ wsu ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(su))⊗ vsu ⊕ (R3)
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(su))⊗ wsu ⊕ (R7)
liftJξK(flattenJσK×JτK(JuK))⊗ vtu ⊕
liftJξK(flattenJσK×JτK(JuK))⊗ wtu ⊕
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(tu))⊗ vtu ⊕ (R4)
liftJξK(flattenJσK×JτK(JuK)⊗ flattenJρK×JπK(tu))⊗ wtu (R8)

This merely leaves the following proof obligation:

liftJξK(2) ⊕
liftJξK(2⊗ flattenJσK×JτK(JuK)) ⊕
liftJξK(3)⊗ JvK[z := π1(A)] ⊕
liftJξK(3⊗ flattenJσK×JτK(JuK))⊗ JvK[z := π1(A)] ⊕
liftJξK(3)⊗ JwK[a := π2(A)] ⊕
liftJξK(3⊗ flattenJσK×JτK(JuK))⊗ JwK[a := π2(A)] �

vsu⊕ wsu⊕ vtu⊕ wtu ⊕
liftJξK(flattenJσK×JτK(JuK))⊗ vsu ⊕
liftJξK(flattenJσK×JτK(JuK))⊗ wsu ⊕
liftJξK(flattenJσK×JτK(JuK))⊗ vtu ⊕
liftJξK(flattenJσK×JτK(JuK))⊗ wtu

Since liftJξK(3) ⊗ s ≈ s ⊕ s ⊕ s, we can eliminate all remaining terms (for example:
liftJξK(3) ⊗ JvK[z := π1(A)] ≈ JvK[z := π1(A)] ⊕ JvK[z := π1(A)] ⊕ JvK[z := π1(A)] �
vsu⊕ vtu); thus, the inequality holds.
Jletϕ,ρ(caseσ,τ,∃ϕ(u, λx : σ.s, λy : τ.t), v)K �
Jcaseσ,τ,ρ(u, λx : σ.letϕ,ρ(s, v), λy : τ.letϕ,ρ(t, v))K

In the following, let us denote vN := JvK∗nat·liftJϕKnat(0) and uf := flattenJσK×JτK(JuK).
With these abbreviations, we have the following on the left-hand side:

Jletϕ,ρ(caseσ,τ,∃ϕ(u, λx : σ.s, λy : τ.t), v)K ≈
liftJρK(1) ⊕

liftJρK(2)⊗ Jcaseσ,τ,∃ϕ(u, λx.s, λy.t)K ∗ JρK · (Λα.λz.JvK ∗ α · z) ⊕
liftJρK(flattenΣγ.JϕKγ(Jcaseσ,τ,∃ϕ(u, λx.s, λy.t)K)⊕ 1)⊗ vN ≈

liftJρK(1)⊕ vN ⊕ liftJρK(2) ⊗
(liftΣγ.JϕKγ(2)⊕ liftΣγ.JϕKγ(3⊗ uf) ⊕

liftΣγ.JϕKγ(un ⊕ 1)⊗ (JsK[x := π1(JuK)]⊕ JtK[y := π2(JuK)])
) ∗ JρK · (Λα.λz.JvK ∗ α · z) ⊕
liftJρK(flattenΣγ.JϕKγ(

liftΣγ.JϕKγ(2)⊕ liftΣγ.JϕKγ(3⊗ uf) ⊕
liftΣγ.JϕKγ(uf ⊕ 1)⊗ (JsK[x := π1(JuK)]⊕ JtK[y := π2(JuK)])

))⊗ vN ≈
liftJρK(1)⊕ vN ⊕ liftJρK(2) ⊗

(liftJρK(2)⊕ liftJρK(3⊗ uf)⊕ liftJρK(uf ⊕ 1) ⊗
(JsK[x := π1(JuK)] ∗ JρK · (Λα.λz.JvK ∗ α · z) ⊕

JtK[y := π2(JuK)] ∗ JρK · (Λα.λz.JvK ∗ α · z))
) ⊕

FSCD 2019

12:44 Polymorphic Higher-order Termination

(liftJρK(2)⊕ liftJρK(3⊗ uf)⊕ liftJρK(uf ⊕ 1) ⊗
liftJρK(flattenΣγ.JϕKγ(JsK[x := π1(JuK)]⊕ JtK[y := π2(JuK)]))

)⊗ vN ≈
liftJρK(1)⊕ vN ⊕ liftJρK(4)⊕ liftJρK(6⊗ uf) ⊕

liftJρK(2)⊗ (JsK[x := π1(JuK)] ∗ JρK · (Λα.λz.JvK ∗ α · z)) ⊕
liftJρK(2)⊗ (JtK[y := π2(JuK)] ∗ JρK · (Λα.λz.JvK ∗ α · z)) ⊕
liftJρK(2⊗ uf)⊗ (JsK[x := π1(JuK)] ∗ JρK · (Λα.λz.JvK ∗ α · z)) ⊕
liftJρK(2⊗ uf)⊗ (JtK[y := π2(JuK)] ∗ JρK · (Λα.λz.JvK ∗ α · z)) ⊕
liftJρK(2)⊗ vN ⊕
liftJρK(3⊗ uf)⊗ vN ⊕
liftJρK(flattenΣγ.JϕKγ(JsK[x := π1(JuK)]))⊗ vN ⊕
liftJρK(flattenΣγ.JϕKγ(JtK[y := π2(JuK)]))⊗ vN ⊕
liftJρK(uf ⊗ flattenΣγ.JϕKγ(JsK[x := π1(JuK)]))⊗ vN ⊕
liftJρK(uf ⊗ flattenΣγ.JϕKγ(JtK[y := π2(JuK)]))⊗ vN ≈

liftJρK(5) ⊕
liftJρK(6⊗ uf) ⊕
liftJρK(2)⊗ (letJρK JsK[x := π1(JuK)] be [[α, z]] in JvK ∗ α · z) ⊕
liftJρK(2)⊗ (letJρK JyK[y := π2(JuK)] be [[α, z]] in JvK ∗ α · z) ⊕
liftJρK(2⊗ uf)⊗ (letJρK JsK[x := π1(JuK)] be [[α, z]] in JvK ∗ α · z) ⊕
liftJρK(2⊗ uf)⊗ (letJρK JyK[y := π2(JuK)] be [[α, z]] in JvK ∗ α · z) ⊕
liftJρK(3)⊗ vN ⊕
liftJρK(3⊗ uf)⊗ vN ⊕
liftJρK(flattenΣγ.JϕKγ(JsK[x := π1(JuK)]))⊗ vN ⊕
liftJρK(flattenΣγ.JϕKγ(JtK[y := π2(JuK)]))⊗ vN ⊕
liftJρK(uf ⊗ flattenΣγ.JϕKγ(JsK[x := π1(JuK)]))⊗ vN ⊕
liftJρK(uf ⊗ flattenΣγ.JϕKγ(JtK[y := π2(JuK)]))⊗ vN ≈

On the right-hand side, we have:

Jcaseσ,τ,ρ(u, λx : σ.letϕ,ρ(s, v), λy : τ.letϕ,ρ(t, v))K ≈
liftJρK(2)⊕ liftJρK(3⊗ uf)⊕ liftJρK(uf ⊕ 1) ⊗

(Jletϕ,ρ(s, v)K[x := π1(JuK)]⊕ Jletϕ,ρ(t, v)K[y := π2(JuK)]) ≈
liftJρK(2)⊕ liftJρK(3⊗ uf) ⊕

Jletϕ,ρ(s, v)K[x := π1(JuK)] ⊕
Jletϕ,ρ(t, v)K[y := π2(JuK)] ⊕
liftJρK(uf)⊗ Jletϕ,ρ(s, v)K[x := π1(JuK)] ⊕
liftJρK(uf)⊗ Jletϕ,ρ(t, v)K[y := π2(JuK)] ≈

liftJρK(2)⊕ liftJρK(3⊗ uf) ⊕
(liftJρK(1)⊕ liftJρK(2)⊗ (letJρK JsK be [[α, z]] in JvK ∗ α · z) ⊕

liftJρK(flatten(JsK)⊕ 1)⊗ vN)[x := π1(JuK)] ⊕
(liftJρK(1)⊕ liftJρK(2)⊗ (letJρK JtK be [[α, z]] in JvK ∗ α · z) ⊕

liftJρK(flatten(JtK)⊕ 1)⊗ vN)[y := π2(JuK)] ⊕
liftJρK(uf)⊗ (liftJρK(1)⊕ liftJρK(2)⊗ (letJρK JsK be [[α, z]] in JvK ∗ α · z) ⊕

liftJρK(flatten(JsK)⊕ 1)⊗ vN)[x := π1(JuK)] ⊕
liftJρK(uf)⊗ (liftJρK(1)⊕ liftJρK(2)⊗ (letJρK JtK be [[α, z]] in JvK ∗ α · z) ⊕

liftJρK(flatten(JtK)⊕ 1)⊗ vN)[y := π2(JuK)] ≈

Ł. Czajka and C. Kop 12:45

liftJρK(2)⊕ liftJρK(3⊗ uf) ⊕
liftJρK(1)⊕ liftJρK(2)⊗ (letJρK JsK[x := π1(JuK) be [[α, z]] in JvK ∗ α · z) ⊕
vN ⊕ liftJρK(flatten(JsK[x := π1(JuK)))⊗ vN ⊕
liftJρK(1)⊕ liftJρK(2)⊗ (letJρK JtK[y := π2(JuK)] be [[α, z]] in JvK ∗ α · z) ⊕
vN ⊕ liftJρK(flatten(JtK[y := π2(JuK)]))⊗ vN ⊕
liftJρK(uf)⊕ liftJρK(2⊗ uf)⊗ (letJρK JsK[x := π1(JuK)] be [[α, z]] in JvK ∗ α · z) ⊕
liftJρK(uf)⊗ vN ⊕ liftJρK(uf ⊗ flatten(JsK[x := π1(JuK)]))⊗ vN ⊕
liftJρK(uf)⊕ liftJρK(2⊗ uf)⊗ (letJρK JtK[y := π2(JuK)] be [[α, z]] in JvK ∗ α · z) ⊕
liftJρK(uf)⊗ vN ⊕ liftJρK(uf ⊗ flatten(JtK[y := π2(JuK)]))⊗ vN

The last step follows because x occurs only in s, and y occurs only in t. This term can
now be reordered to:

liftJρK(4) ⊕
liftJρK(5⊗ uf) ⊕
liftJρK(2)⊗ (letJρK JsK[x := π1(JuK) be [[α, z]] in JvK ∗ α · z) ⊕
liftJρK(2)⊗ (letJρK JtK[y := π2(JuK)] be [[α, z]] in JvK ∗ α · z) ⊕
liftJρK(2⊗ uf)⊗ (letJρK JsK[x := π1(JuK)] be [[α, z]] in JvK ∗ α · z) ⊕
liftJρK(2⊗ uf)⊗ (letJρK JtK[y := π2(JuK)] be [[α, z]] in JvK ∗ α · z) ⊕
liftJρK(2)⊗ vN ⊕
liftJρK(2⊗ uf)⊗ vN ⊕
liftJρK(flatten(JsK[x := π1(JuK)))⊗ vN ⊕
liftJρK(flatten(JtK[y := π2(JuK)]))⊗ vN ⊕
liftJρK(uf ⊗ flatten(JsK[x := π1(JuK)]))⊗ vN ⊕
liftJρK(uf ⊗ flatten(JtK[y := π2(JuK)]))⊗ vN

We conclude once more by absolute positiveness.

FSCD 2019

	Introduction
	Preliminaries
	Polymorphic Functional Systems
	A well-ordered set of interpretation terms
	Interpretation terms
	The ordering pair (,)
	Weak monotonicity

	A reduction pair for PFS terms
	Proving termination with rule removal
	A larger example
	Conclusions and future work
	References
	Complete proofs
	Strong Normalisation of
	Weak monotonicity proof
	Proofs for Section 6

	Proving the inequalities in Section 7

