
Tuple Interpretations for Higher-order
Complexity

Cynthia Kop and Deivid Vale

This technical report is a pre-publication copy of the paper [32], to be presented
at FSCD 2021. It includes an appendix for three purposes:

giving complete proofs of the results which, for space reasons, are only
sketched in the paper or omitted altogether;
providing some additional lemmas, which aim to make it easier to prove
monotonicity of user-defined interpretations;
elaborating on the examples in the paper and supplying some additional
ones.



Tuple Interpretations for Higher-Order Complexity
Cynthia Kop � Â

Department of Software Science, Radboud University Nijmegen, The Netherlands

Deivid Vale �Â

Department of Software Science, Radboud University Nijmegen, The Netherlands

Abstract
We develop a class of algebraic interpretations for many-sorted and higher-order term rewriting
systems that takes type information into account. Specifically, base-type terms are mapped to
tuples of natural numbers and higher-order terms to functions between those tuples. Tuples may
carry information relevant to the type; for instance, a term of type nat may be associated to a
pair ⟨cost, size⟩ representing its evaluation cost and size. This class of interpretations results in a
more fine-grained notion of complexity than runtime or derivational complexity, which makes it
particularly useful to obtain complexity bounds for higher-order rewriting systems.

We show that rewriting systems compatible with tuple interpretations admit finite bounds on
derivation height. Furthermore, we demonstrate how to mechanically construct tuple interpretations
and how to orient β and η reductions within our technique. Finally, we relate our method to runtime
complexity and prove that specific interpretation shapes imply certain runtime complexity bounds.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting

Keywords and phrases Complexity, higher-order term rewriting, many-sorted term rewriting, poly-
nomial interpretations, weakly monotonic algebras

Funding The authors are supported by the NWO TOP project “ICHOR”, NWO 612.001.803/7571
and the NWO VIDI project “CHORPE”, NWO VI.Vidi.193.075.

1 Introduction

Term rewriting systems (TRSs) are a conceptually simple but powerful computational model.
It is simple because computation is modelled straightforwardly by step-by-step applications
of transformation rules. It is powerful in the sense that any algorithm can be expressed in
it (Turing Completeness). These characteristics make TRSs a formalism well-suited as an
abstract analysis language, for instance to study properties of functional programs. We can
then define specific analysis techniques for each property of interest.

One such property is complexity. The study of complexity has long been a topic of
interest in term rewriting [7, 11, 24, 25, 27, 35], as it both holds relations to computational
complexity [3, 11, 12] and resource analysis [6, 13] and is highly challenging. Most commonly
studied are the notions of runtime and derivational complexity, which capture the number of
steps that may be taken when starting with terms of a given size and shape. In essence, this
is a form of resource analysis which abstracts away from the true machine cost of reduction
in a rewriting engine but still has a close relation to it [1, 8, 12, 18].

These notions do not obviously extend to the higher-order setting, however. In higher-
order term rewriting, a term may represent a function; yet, the size of a function does not
tell us much about its behaviour. Rather, properties such as “the function is size-increasing”
may be more relevant. Clearly a more sophisticated complexity notion is needed.

In this paper we will propose a new method to analyse many-sorted and higher-order term
rewriting systems, which can be used as a foundation to obtain a variety of complexity results.
This method is based on interpretations in a monotonic algebra as also used for termination
analysis [22, 39], where a term of function type is mapped to a monotonic function. Unlike
[22, 39], we map a term of base type not to an integer, but rather to a vector of integers

mailto:c.kop@cs.ru.nl
https://www.cs.ru.nl/~cynthiakop
https://orcid.org/0000-0002-6337-2544
mailto:deividvale@cs.ru.nl
https://www.cs.ru.nl/~deividvale
https://orcid.org/0000-0003-1350-3478


2 Tuple Interpretations for Higher-Order Complexity

describing different values of interest in the term. This will allow us to reason separately
about—for instance—the length of a list and the size of its greatest element, and to describe
the behaviour of a term of function type in a fine-grained way.

This method is also relevant for termination analysis, since we essentially generalise and
extend matrix interpretations [35] to higher-order rewriting. In addition, the technique may
add some power to the arsenal of a complexity or termination analysis tool for first-order term
rewriting; in particular many-sorted term rewriting due to the way we use type information.

A note on terminology. We use the word “complexity” as it is commonly used in term
rewriting: a worst-case measure of the number of steps in a reduction. In this paper we do
not address the question of true resource use or connections to computational complexity. In
particular, we do not address the true cost of beta-reduction. This is left to future work.

Outline of the paper. We will start by recalling the definition of and fixing notation for
many-sorted and higher-order term rewriting (§2). Then, we will define tuple interpretations
for many-sorted first-order rewriting to explore the idea (§3), discuss our primary objective
of higher-order tuple interpretations (§4), and relate our method to runtime complexity (§5).
Finally, we will discuss related work (§6) and end with conclusions and future work (§7).

2 Preliminaries

We assume the reader is familiar with first-order term rewriting and λ-calculus. In this
section, we fix notation and discuss the higher-order rewriting format used in the paper.

2.1 First-Order Many-Sorted Rewriting
Many-sorted term rewriting [38] is in principle the same as first-order term rewriting. The
only difference is that we impose a sort system and limit interest to well-sorted terms.

Formally, we assume given a non-empty set of sorts S. A many-sorted signature consists
of a set F of function symbols together with two functions that map each symbol to a
finite sequence of input sorts and an output sort. Fixing a many-sorted signature, we will
denote f :: [ι1 × · · · × ιk] ⇒ κ if f ∈ F and f has input sorts ι1, . . . , ιk and output sort κ.
We also assume given a set X =

⋃
ι∈S Xι of variables disjoint from F , such that all Xι are

pairwise disjoint. The set Tfo(F , X ) of many-sorted terms is inductively defined as the set
of expressions s such that s :: κ can be derived for some sort κ using the clauses:

x :: κ if x ∈ Xκ f(s1, . . . , sk) :: κ if f :: [ι1 × · · · × ιk] ⇒ κ and each si :: ιi

If s :: κ, we call κ the sort of s. Substitutions, rewrite rules and reduction are defined as usual
in first-order term rewriting, except that substitutions are sort-preserving (each variable is
mapped to a term of the same sort) and both sides of a rule have the same sort. We omit
these definitions, since they are a special case of the higher-order definitions in Section 2.2.

▶ Example 1. We fix nat and list for the sorts of natural numbers and lists of natural
numbers, respectively; and a signature with the symbols: 0 :: nat (this is shorthand notation
for [] ⇒ nat), s :: [nat] ⇒ nat, nil :: list, cons :: [nat × list] ⇒ list, rev :: [list] ⇒ list,
sum :: [list] ⇒ nat, append :: [list × list] ⇒ list, and ⊕:: [nat × nat] ⇒ nat. The rules below
compute well-known functions over lists and numbers. We follow the convention of using



C. Kop and D. Vale 3

infix notation for cons and ⊕, i.e., cons(x, xs) is written x : xs and ⊕(x, y) is written x ⊕ y.

x ⊕ 0 → x sum(nil) → 0
x ⊕ s(y) → s(x ⊕ y) sum(x : xs) → sum(xs) ⊕ x

append(nil, xs) → xs rev(nil) → nil
append(x : xs, ys) → x : append(xs, ys) rev(x : xs) → append(rev(xs), x : nil)

2.2 Higher-Order Rewriting
For higher-order rewriting, we will use algebraic functional systems (AFS), a slightly simplified
form of a higher-order language introduced by Jouannaud and Okada [29]. This choice gives
an easy presentation, as it combines algebraic definitions in a first-order style with a function
mechanism using λ-abstractions and term applications.

Given a non-empty set of sorts S, the set ST of simple types (or just types) is given
by: (a) S ⊆ ST ; (b) if σ, τ ∈ ST then σ ⇒ τ ∈ ST . Types are denoted by σ, τ and sorts
by ι, κ. A higher-order signature consists of a set F of function symbols together with two
functions that map each symbol to a finite sequence of input types and an output type; fixing
a signature, we denote this type information f :: [σ1 × · · · × σk] ⇒ τ . A function symbol is
said to be higher-order if at least one of its input types or its output type is an arrow type.

We also assume given a set X =
⋃

σ∈ST Xσ of variables disjoint from F (and pairwise
disjoint) so that each Xσ is countably infinite. The set T (F , X ) of terms is inductively
defined as the set of expressions whose type can be derived using the following clauses:

x :: σ if x ∈ Xσ (λx.s) :: σ ⇒ τ if x ∈ Xσ and s :: τ

(s t) :: τ if s :: σ ⇒ τ and :: σ f(s1, . . . , sk) :: τ if f :: [σ1 × · · · × σk] ⇒ τ

and each si :: σi

If s :: σ, we say that σ is the type of s. It is easy to see that each term has a unique type.
As in the λ-calculus, a variable x is bound in a term if it occurs in the scope of an abstractor

λx.; it is free otherwise. A term is called closed if it has no free variables and ground if it
also has no bound variables. Term equality is modulo α-conversion and bound variables are
renamed if necessary. Application is left-associative and has precedence over abstractions;
for example, λx.s t u reads λx.((s t) u). A substitution is a finite, type-preserving mapping
γ : X → T (F , X ), typically denoted [x1 := s1, . . . , xn := tn]. Its domain {x1, . . . , xn} is
denoted dom(γ). A substitution γ is applied to a term s, notation sγ, by renaming all bound
variables in s to fresh variables and then replacing each x ∈ dom(γ) by γ(x). Formally:

xγ = γ(x) if x ∈ dom(γ) (s t)γ = (sγ) (tγ)
xγ = x if x /∈ dom(γ) f(s1, . . . , sk)γ = f(s1γ, . . . , skγ)

(λx.s)γ = λy.(s([x := y]γ)) for y fresh

Here, [x := y]γ is the substitution that maps x to y and all variables in dom(γ) other than x

to γ(x). The result of sγ is unique modulo α-renaming.
A rewriting rule is a pair of terms ℓ → r of the same type such that all free variables of r

also occur in ℓ. Given a set of rewriting rules R, the rewrite relation induced by R on the
set T (F , X ) is the smallest monotonic relation that is stable under substitution and contains
both all elements of R and β-reduction. That is, it is inductively generated by:

(λx.s) t →R s[x := t] λx.s →R λx.t if s →R t

ℓγ →R rγ if ℓ → r ∈ R s u →R t u if s →R t

f(. . . , s, . . . ) →R f(. . . , t, . . . ) if s →R t u s →R u t if s →R t



4 Tuple Interpretations for Higher-Order Complexity

Note that we do not, by default, include the common η-reduction rule scheme (“λx.s x →R s

if x is not a free variable in s”). We avoid this because not all sources consider it, and it is
easy to add by including, for all types σ, τ , a rule λx.F x → F with F ∈ Xσ⇒τ in R.

An algebraic functional system (AFS) is the combination of a set of terms T (F , X ) and a
rewrite relation →R over T (F , X ). An AFS is typically given by supplying F and R.

A many-sorted term rewriting system (TRS), as discussed in Section 2.1, is a pair
(Tfo(F , X ), →R) where F is a many-sorted signature and →R a rewrite relation over
Tfo(F , X ). That is, it is essentially an AFS where we only consider first-order terms.

▶ Example 2. Following common examples in higher-order rewriting, we will use (as a
running example) the AFS (F , R)fold, with symbols nil :: list, cons :: [nat × list] ⇒ list,
map :: [(nat ⇒ nat) × list] ⇒ list, foldl :: [(nat ⇒ nat ⇒ nat) × nat × list] ⇒ nat, and rules:

foldl(F, z, nil) → z map(F, nil) → nil
foldl(F, z, x : xs) → foldl(F, (F z x), xs) map(F, x : xs) → (F x) : map(F, xs)

2.3 Functions and orderings
An extended well-founded set is a tuple (A, >, ≥) such that > is a well-founded ordering on
A; ≥ is a quasi-ordering on A; x > y implies x ≥ y; and x > y ≥ z implies x > z. Hence, it
is permitted, but not required, that ≥ is the reflexive closure of >.

For sets A, B, the notation A =⇒ B denotes the set of functions from A to B. Function
equality is extensional: for f, g ∈ A =⇒ B we say f = g iff f(x) = g(x) for all x ∈ A.

If (A, >, ≥) and (B, ≻, ⪰) are extended well-founded sets, we say that f ∈ A =⇒ B is
weakly monotonic if x ≥ y implies f(x) ⪰ f(y). In addition, if (A1, >1, ≥1), . . . , (An, >n, ≥n)
are all well-founded sets, we say that f ∈ A1 ×· · ·×An =⇒ B is weakly monotonic if we have
f(x1, . . . , xn) ⪰ f(y1, . . . , yn) whenever xi ≥i yi for all 1 ≤ i ≤ n. We say that f is strict in
argument j if xj >j yj (and also xi ≥i yi for all i) implies f(x1, . . . , xn) ≻ f(y1, . . . , yn).

We say that f ∈ A1 × · · · × An =⇒ B is strongly monotonic if f is weakly monotonic and
strict in all its arguments (and similar for f ∈ A =⇒ B).

3 First-Order tuple interpretation

In this section, we will introduce the concept of tuple interpretations for many-sorted term
rewriting. This is the core methodology which the higher-order theory is built on top of.
This theory also has value by itself as a first-order termination and complexity technique.

It is common in the rewriting literature to use termination proofs to assess the difficulty of
rewriting a term to normal form [7, 27]. The intuition comes from the idea that by ordering
rewriting rules in descending order we gauge the order of magnitude of reduction. The same
principle applies for syntactic [24, 25, 34] and semantic [26, 27, 35] termination proofs.

On the semantic side there is a natural strategy: given an extended well-founded set
A = (A, >, ≥) find an interpretation from terms to elements of A so that JsK > JtK whenever
s →R t. (This can typically be done by showing that JℓK > JrK for all rules ℓ → r). This
interpretation holds information about the complexity of (F , R) since the maximum length
of a reduction starting in a term s is bounded by number of > steps that may be done
starting in JsK. If JsK is a natural number, this gives a bound immediately.

In the setting of many-sorted term rewriting, we may formally define this as follows.

▶ Definition 3. Let S be a set of sorts and F an S-signature. A many-sorted monotonic
algebra A consists of a family of extended well-founded sets (Aι, >ι, ≥ι)ι∈S together with an



C. Kop and D. Vale 5

interpretation J which associates to each f :: [ι1 × · · · × ιk] ⇒ κ in F a strongly monotonic
function Jf ∈ Aι1 × · · · × Aιk

=⇒ Aκ. Let α be a function that maps variables of sort ι to
elements of Aι. We extend J to a function J·Kα that maps terms of sort ι to elements of Aι,
by letting JxKα = α(x) if x is a variable of sort ι, and Jf(s1, . . . , sk)Kα = Jf(Js1Kα, . . . , JskKα).
We say that a TRS (F , R) is compatible with A if JℓKα > JrKα for all α and all ℓ → r ∈ R.

We will generally omit the subscript α when it is clear from context, writing JsK instead
of JsKα. In examples, we may write something like JsK = x + y to mean JsKα = α(x) + α(y).

▶ Theorem 4. If (F , R) is compatible with A then for all α: JsKα > JtKα whenever s →R t.

Proof Sketch. By induction on the size of s using strong monotonicity of each Jf . ◀

A common notion in the literature on complexity of term rewriting is derivation height:

dhR(t) := max{n ∈ N | ∃s. t →n s}.

Intuitively, dhR(t) describes the worst-case number of steps for all possible reductions starting
in t. If (F , R) is terminating, then dhR(·) is a total function. If (Aι, >ι) = (N, >) then we
easily see that dhR(t) ≤ JtK for any term t : ι. Hence, J·K can be used to bound the derivation
height function. However, this may give a severe overestimation, as demonstrated below.

▶ Example 5. Let (F , R)ab be the TRS with only a rule a(b(x)) → b(a(x)) and signature
a, b : [string] ⇒ string and ϵ : string. We can prove termination by the following interpretation:

Ja(x)K = 2 ∗ x Jb(x)K = x + 1 JϵK = 0

Indeed, we have JℓK > JrK for the only rule as Ja(b(x))K = 2 ∗ x + 2 > 2 ∗ x + 1 = Jb(a(x))K.
Now consider a term t = an(bm(ϵ)). Then dhR(t) = n∗m whereas JtK = 2nm; an exponential
difference! Such an overestimation is problematic if we want to use J·K to bound dhR(·).

We could find a tight bound for the system of Example 5 by a reasoning like the following:
for every term s, let #bs(s) be the number of b occurrences in s. For a term t, let cost(t)
denote

∑
{{#bs(s) | a(s) is a subterm of t}}. Then, the cost of a term decreases exactly by 1

in each step. As the normal form has cost 0, we find the tight bound cost(an(bm(ϵ))) = n ∗ m.
This reasoning relies on tracking more than one value. We can formalise this reasoning

using an algebra interpretation (and will do so in Example 8), by choosing the right A:

▶ Definition 6. A tuple algebra is an algebra A = (A, J) with A = (Aι, >ι, ≥ι)ι∈S such
that each Aι has the form NK[ι] (for an integer K[ι] ≥ 1) and we let ⟨n1, . . . , nK[ι]⟩ ≥ι

⟨n′
1, . . . , n′

K[ι]⟩ if each ni ≥ n′
i, and ⟨n1, . . . , nK[ι]⟩ >ι ⟨n′

1, . . . , n′
K[ι]⟩ if additionally n1 > n′

1.

Intuitively, the first component always indicates “cost”: the number of steps needed to
reduce a term to normal form. This is the component that needs to decrease in each rewrite
step to have JsK > JtK whenever s →R t. The remaining components represent some value of
interest for the sort. This could for example be the size of the term (or its normal form), the
length of a list, or following Example 5, the number of occurrences of a specific symbol. For
these components, we only require that they do not increase in a reduction step.

By the definition of >ι, and using Theorem 4, we can conclude:

▶ Corollary 7. If a TRS (F , R) is compatible with a tuple algebra then it is terminating and
dhR(t) ≤ JtK1, for all terms t. (Here, JtK1 indicates the first component of the tuple JtK.)

Using this, we obtain a tight bound on the derivation height of an(bm(ϵ)) in Example 5:



6 Tuple Interpretations for Higher-Order Complexity

▶ Example 8. The TRS (F , R)ab is compatible with the tuple algebra with Astring = N2 and

Ja(x)K = ⟨x1 + x2, x2⟩ Jb(x)K = ⟨x1, x2 + 1⟩ JϵK = ⟨0, 0⟩

Here, again, subscripts indicate tuple indexing; i.e., ⟨n, m⟩1 = n and ⟨n, m⟩2 = m. Note that
for every ground term s we have JsK2 = #bs(s). The first component exactly sums #bs(t) for
every subterm t of s which has the form a(t′). We have: Ja(b(x))K = ⟨x1 + x2 + 1, x2 + 1⟩ >nat
⟨x1 + x2, x2 + 1⟩ = Jb(a(x))K. The interpretation functions Ja and Jb are indeed monotonic.
For example, for Ja: if x >nat y then x1 + x2 > y1 + y2 (since x1 > y1 and x2 ≥ y2) and
x2 ≥ y2; and if x ≥nat y then x1+x2 ≥ y1+y2 and x2 ≥ y2. We have Jan(bm(ϵ))K = (n∗m, m).

To build strongly monotonic functions we can for instance use the following observation:

▶ Lemma 9. A function F : NK[ι1] × · · · × NK[ιk] =⇒ NK[κ] is strongly monotonic if we can
write F (x1, . . . , xk) = ⟨x1

1 + · · · + xk
1 + S1(x1, . . . , xk), S2(x1, . . . , xk), . . . , SK[κ](x1, . . . , xk)⟩,

where each Si is a weakly monotonic function in NK[ι1] × · · · × NK[ιk] =⇒ N.
Moreover, a function S : NK[ι1] × · · · × NK[ιk] =⇒ N is weakly monotonic if it is built

from constants in N, variable components xn
j and weakly monotonic functions in Nn =⇒ N.

For the “weakly monotonic functions in Nn =⇒ N” we could for instance use +, ∗ or max.
To determine the length K[ι] of the tuple for a sort ι, we use a semantic approach, similar

to one used in [19] in the context of functional languages: the elements of the tuple are values
of interest for the sort. The two prominent examples in this paper are the sort nat of natural
numbers—which is constructed from the symbols 0 :: nat and s :: [nat] ⇒ nat—and the sort list
of lists of natural numbers—which is constructed using nil :: list and cons :: [nat × list] ⇒ list.
For natural numbers, we consider their size, so the number of ss. For lists, we consider both
their length and an upper bound on the size of their elements. This gives K[nat] = 2 (cost of
reducing the term, size of its normal form) and K[list] = 3 (cost of reducing, length of normal
form, maximum element size). In the remainder of this paper, we will use xc as syntactic
sugar for x1 (the cost component of x), xs and xl as x2 and xm as x3.

▶ Example 10. Consider the TRS defined in Example 1. We start by giving an interpretation
for the type constructors: the symbols 0, nil, s and cons which are used to construct natural
numbers and lists. To be in line with the semantics for the type interpretation, we let:

J0K = ⟨0, 0⟩ Js(x)K = ⟨xc, xs + 1⟩
JnilK = ⟨0, 0, 0⟩ Jx : xsK = ⟨xc + xsc, xsl + 1, max(xs, xsm)⟩

This expresses that 0 has no evaluation cost and size 0; analogously, nil has no evaluation
cost and 0 as length and maximum element. The cost of evaluating a term s(t) depends
entirely on the cost of the term’s argument t; the size component counts the number of ss.
The cost component for cons similarly sums the costs of its arguments, while the length is
increased by 1, and the maximum element is the maximum between its head and tail.

For the remaining symbols we choose the following interpretations:

Jx ⊕ yK = ⟨xc + yc + ys + 1, xs + ys⟩
Jsum(xs)K = ⟨xsc + 2 ∗ xsl + xsl ∗ xsm + 1, xsl ∗ xsm⟩
Jrev(xs)K = ⟨xsc + xsl + xsl∗(xsl+1)

2 + 1, xsl, xsm⟩
Jappend(xs, ys)K = ⟨xsc + ysc + xsl + 1, xsl + ysl, max(xsm, ysm)⟩

Checking compatibility is easily done for the interpretation above, and strong monotonicity
follows by Lemma 9 (as n 7→ n∗(n+1)

2 ∈ N =⇒ N is weakly monotonic). We see that the cost
of evaluating append is linear in the first list length and independent of the size of the list
elements, while evaluating sum gives a quadratic dependency on length and size combined.



C. Kop and D. Vale 7

Our tuple interpretations have some similarities with matrix interpretations [21], where
also each term is associated to an n-tuple. In essence, matrix interpretations are tuple
interpretations, for systems with only one sort. However, the shape of the interpretation
functions Jf in matrix interpretations is limited to functions following Lemma 9 where each
S is a linear multivariate polynomial. Hence, our interpretations are a strict generalisation,
which also admits interpretations such as those used for sum, rev and append in Example 10.

For the purpose of termination, tuple interpretations strictly extend the power of both
polynomial interpretations and matrix interpretations already in the first-order case.

▶ Example 11. A TRS that implements division in [4] shows a limitation of polynomial
interpretations: it contains a rule quot(s(x), s(y)) → s(quot(minus(x, y), s(y))) which cannot
be oriented by any polynomial interpretation, because Jminus(x, s(x))K > Js(x)K for any
strongly monotonic polynomial Jminus. Due to the duplication of y, this rule also cannot be
handled by a matrix interpretation. However, we do have a compatible tuple interpretation:

J0K = ⟨0, 0⟩ Jminus(x, y)K = ⟨xc + yc + ys + 1, xs⟩
Js(x)K = ⟨xc, xs + 1⟩ Jquot(x, y)K = ⟨xc + xs + yc + xs ∗ yc + xs ∗ ys + 1, xs⟩

In practice, in first-order termination or complexity analysis one would not exclusively
use interpretations, but rather a combination of different techniques. In that context, tuple
interpretations may be used as one part of a large toolbox. They are likely to offer a simple
complexity proof in many cases, but they are unlikely to be an essential technique since so
many other methods have already been developed. Indeed, all examples in this section can
be handled with previously established theory. For instance, Example 5 can be handled with
matrix interpretations, while sum and rev may be analysed using ideas from [24] and [35].

However, developing a new technique for first-order termination and traditional complexity
analysis is not our goal. Our method does provide a more fine-grained notion of complexity,
which may consider information such as the length of a list. Moreover, the first-order case is
an important stepping stone towards higher-order analysis, where far fewer methods exist.

4 Higher-order tuple interpretations

In this section, we will extend the ideas from Section 3 to the higher-order setting, and hence
define the core notion of this paper: higher-order tuple interpretations. To do this, we will
build on the notion of strongly monotonic algebras originating in [39].

4.1 Strongly monotonic algebras
In first-order term rewriting, the complexity of a TRS is often measured as runtime or
derivational complexity. Both measures consider initial terms s of a certain shape, and supply
a bound on dhR(s) given the size of s. However, this is not a good approach for higher-order
terms: the behaviour of a term of higher type generally cannot be captured in an integer.

▶ Example 12. Consider the AFS obtained by combining Examples 1 and 2. The evaluation
cost of a term foldl(F, n, q) depends almost completely on the behaviour of the functional
subterm F , and not only on its evaluation cost. To see this, consider two cases: F1 :=
λx.λy.y ⊕ x, and F2 := λx.λy.x ⊕ x. For natural numbers n, m, the evaluation cost of both
F1(n, m) and F2(n, m) is the same: n + 1. However, the size of the result is different. Hence,
the number of steps needed to compute foldl(F1, n, q) for a number n and list q is quadratic
in the size of n and q, while the number of steps needed for foldl(F2, n, q) is exponential.



8 Tuple Interpretations for Higher-Order Complexity

As Example 12 shows, higher-order rewriting is a natural place to separate cost and size.
But more than that, we need to know what a function does with its arguments: whether it
is size-increasing, how long it takes to evaluate them, and more.

This is naturally captured by the notion of (weakly or strongly) monotonic algebras for
higher-order rewriting introduced by v.d. Pol [39]: here, a term of arrow type is interpreted
as a function, which allows the interpretation to retain all relevant information.

Monotonic interpretations were originally defined for a different higher-order rewriting
formalism, which does make some difference in the way abstraction and application is handled.
Weakly monotonic algebras were transposed to AFSs in [22]; however, here we extend the more
natural notion of hereditarily monotonic algebras which v.d. Pol only briefly considered.1

▶ Definition 13. Let S be a set of sorts and F a higher-order signature. We assume given
for every sort ι an extended well-founded set (Aι, >ι, ≥ι). From this, we define the set of
strongly monotonic functionals, as follows:

For all sorts ι: Mι := Aι and ⊐ι := >ι and ⊒ι := ≥ι.
For an arrow type σ ⇒ τ :

Mσ⇒τ := {F ∈ Mσ =⇒ Mτ | F is strongly monotoic}
F ⊐σ⇒τ G iff Mσ is non-empty and ∀x ∈ Mσ.F (x) ⊐τ G(x), and
F ⊒σ⇒τ G iff ∀x ∈ Mσ.F (x) ⊒τ G(x).

That is, Mσ⇒τ contains strongly monotonic functions from Mσ to Mτ and both ⊐σ⇒τ and
⊒σ⇒τ do a point-wise comparison. By a straightforward induction on types we have:

▶ Lemma 14. For all types σ, (Mσ,⊐σ, ⊒σ) is an extended well-founded set; that is:

⊐σ is well-founded and ⊒σ is reflexive;
both ⊐σ and ⊒σ are transitive;
for all x, y, z ∈ Mσ, x ⊐σ y implies x ⊒σ y and x ⊐σ y ⊒σ z implies x ⊐σ z.

We will define higher-order strongly monotonic algebras as an extension of Definition 3,
mapping a term of type σ to an element of Mσ. Functional terms f(s1, . . . , sk) and variables
can be handled as before, but we now also have to deal with application and abstraction.
Application is straightforward: since terms of higher type are mapped to functions, we can
interpret application as function application, i.e., Js · tKα := JsKα(JtKα). However, abstraction
is more difficult. The natural choice would be to view abstraction as defining a function; i.e.,
let Jλx.sKα be the function d 7→ JsKα[x:=d]. Unfortunately, this is not necessarily monotonic:
d 7→ JsKα[x:=d] is strongly monotonic only if x occurs freely in s. For example λx.0 would be
mapped to a constant function, which is not in Mnat⇒nat. Moreover, this definition would
give J(λx.s) · tKα = Js[x := t]Kα, so β-steps would not be counted toward the evaluation cost.

We handle both problems by using a choosable function MakeSM σ,τ , which takes a
function that may be strongly monotonic or constant, and turns it strongly monotonic.

▶ Definition 15. A (σ, τ)-monotonicity function MakeSM σ,τ is a strongly monotonic function
in Cσ,τ =⇒ Mσ=⇒τ , where the set Cσ,τ is defined as Mσ⇒τ ∪ {F ∈ Mσ =⇒ Mτ | F (x) =
F (y) for all x, y ∈ Mσ}. (Here, the set Cσ,τ is ordered by point-wise comparison.)

1 In [39], v.d. Pol rejects hereditarily (or: strongly) monotonic algebras because they are not so well-suited
for analysing the HRS format [36] where reasoning is modulo →β : it is impossible to both interpret all
terms of function type to strongly monotonic functions and have J(λx.s) tK = Js[x := t]K. In the AFS
format, we do not have the latter requirement. In [22], where the authors considered the AFS format
like we do here (but for interpretations to N rather than to tuples), weakly monotonic algebras were
used because they are a more natural choice in the context of dependency pairs.



C. Kop and D. Vale 9

With this definition, we are ready to define strongly monotonic algebras.

▶ Definition 16. A strongly monotonic algebra AM consists of a family (Mσ,⊐σ, ⊒σ)σ∈ST ,
an interpretation function J which associates to each f :: [σ1 × · · · × σk] ⇒ τ in F an element
of Mσ1⇒...⇒σk⇒τ , and a (σ, τ)-monotonicity function MakeSM σ,τ , for each σ, τ ∈ ST .

Let α be a function that maps variables of type σ to elements of Mσ. We extend J to a
function J·Kα that maps terms of type σ to elements of Mσ, as follows:

JxKα = α(x) for variables x Jf(s1, . . . , sk)Kα = Jf(Js1Kα, . . . , JskKα)
Js · tKα = JsKα(JtKα) Jλx.sKα = MakeSM σ,τ (d 7→ JsKα[x:=d]) if x :: σ and s :: τ

We can see by induction on s that for s :: σ indeed JsKα ∈ Mσ. We say that an AFS (F , R)
is compatible with AM if for all valuations α both (1) JℓKα ⊐ JrKα, for all ℓ → r ∈ R; and
(2) J(λx.s) tKα ⊐ Js[x := t]Kα, for any s :: σ, t :: τ and x ∈ Xτ .

As before, we will typically omit the α subscript and use notation like JsK = F (x + 3) to
denote JsKα = α(F )(α(x) + 3). When types are not relevant, we will denote ⊐ instead of
specifying ⊐σ, and we may write f ∈ M to mean f ∈ Mσ for some σ ∈ ST .

We extend Theorem 4 into the following compatibility result.

▶ Theorem 17. If (F , R) is compatible with AM, then for all α, JsKα ⊐ JtKα when s →R t.

For Definition 13 and Theorem 17, we can choose the well-founded sets (Aι, >ι, ≥ι) for
each sort, and the functions MakeSM σ,τ for each pair of types, as we desire. A higher-order
tuple algebra is a strongly monotonic algebra where each (Aι, >ι, ≥ι) follows Definition 6.

▶ Example 18. Let Anat = N2 and Alist = N3 as before, and assume cons and nil are
interpreted as in Example 10. Consider the rules for map in Example 2. We let:

Jmap(F, xs)K = ⟨(xsl + 1) ∗ (F (⟨xsc, xsm⟩)c + 1), xsl, F (xsc, xsm)s⟩

This expresses that map does not increase the list length (as the length component is just
xsl), the greatest element of the result is bounded by the value of F on the greatest element
of xs, and the evaluation cost is mostly expressed by a number of F steps that is linear in
the length of xs. We will see in Lemma 23 that Jmap is indeed strongly monotonic.

To prove compatibility of the AFS with AM, we must first see that JℓK ⊐ JrK for all rules
ℓ →R r. For the first map rule this is easy: Jmap(F, nil)K = ⟨F (⟨0, 0⟩)c + 1, 0, F (⟨0, 0⟩)s⟩ ⊐list
⟨0, 0, 0⟩ = JnilK. For the second map rule, we must check that ⟨cost-ℓ, len-ℓ, max-ℓ⟩ ⊐list
⟨cost-r, len-r, max-r⟩; that is, cost-ℓ > cost-r and len-ℓ ≥ len-r and max-ℓ ≥ max-r, where:

cost-ℓ = Jmap(F, x : xs)Kc = (xsl + 2) ∗ (F (⟨xc + xsc, max(xs, xsm)⟩)c + 1)
cost-r = JF (x) : map(F, xs)Kc = F (⟨xc, xs⟩)c + (xsl + 1) ∗ (F (⟨xsc, xsm⟩)c + 1)
len-ℓ = Jmap(F, x : xs)Kl = xsl + 1 = JF (x) : map(F, xs)Kl = len-r
max-ℓ = Jmap(F, x : xs)Km = F (⟨xc + xsc, max(xs, xsm)⟩)s
max-r = JF (x) : map(F, xs)Km = max(F (⟨xc, xs⟩)s, F (⟨xsc, xsm⟩)s)

To see why cost-ℓ > cost-r, we observe that for all x, xs: ⟨xc + xsc, max(xs + xsm)⟩ ⊒nat both
⟨xc, xs⟩ and ⟨xsc, xsm⟩. Since F ∈ Mnat⇒nat therefore F (⟨xc + xsc, max(xs + xsm)⟩) ⊒nat
both F (⟨xc, xs⟩) and F (⟨xsc, xsm⟩). We find max-ℓ ≥ max-r by a similar reasoning.

4.2 Interpreting abstractions
Example 18 is not complete: we have not yet defined the functions MakeSM σ,τ , and we
have not shown that J(λx.s) tK ⊐ Js[x := t]K always holds. To achieve this, we will define
some standard functions to build elements of M. This allows us to easily construct strongly
monotonic functionals, both to build MakeSM σ,τ and to create interpretation functions Jf .



10 Tuple Interpretations for Higher-Order Complexity

▶ Definition 19. For every type σ, we define: 0σ ∈ Mσ; costofσ ∈ Mσ =⇒ N; and
addcσ ∈ N × Mσ =⇒ Mσ by mutual recursion on σ as follows.

0ι = ⟨0, . . . , 0⟩ 0σ⇒τ = d 7→ addcτ (costofσ(d), 0τ )
costofι(⟨n1, . . . , nK[ι]⟩) = n1 costofσ⇒τ (F ) = costofτ (F (0σ))
addcι(c, ⟨n1, . . . , nK[ι]⟩) = ⟨c + n1, n2, . . . , nK[ι]⟩ addcσ⇒τ (c, F ) = d 7→ addcτ (c, F (d))

Here, 0σ defines the minimal element of Mσ. The function costofσ maps every F to the
cost component of F (0σ1 , . . . , 0σm

); hence, if F ⊐σ G we have costofσ(F ) > costofσ(G).
The function addcσ pointwise increases an element of Mσ by adding to the cost component:
if F (x1, . . . , xm) = ⟨n1, . . . , nk⟩, then addc(c, F )(x1, . . . , xm) = ⟨c + n1, n2, . . . , nk⟩.

It is easy to see that 0σ and addcσ(n, X) are in M for all σ (by induction on σ), and that
costofσ and addcσ are strict in all their arguments. Various properties of these functions
are detailed in the appendix (Lemmas B.4–B.8). We will particularly use that always
F (addc(n, x)) ⊒ addc(n, F (x)) (Lemma B.7) and costof(F (x)) ≥ costof(x) (Lemma B.8).

We can use these functions to for instance create candidates for MakeSM σ,τ . While many
suitable definitions are possible, we will particularly consider the following:

▶ Definition 20. For types σ, τ , and F a weakly monotonic function in Mσ =⇒ Mτ , let:

Φσ,τ (F ) =
{

d 7→ addcσ⇒τ (1, F (d)) if F is in Mσ⇒τ

d 7→ addcσ⇒τ (costofσ(d) + 1, F (d)) otherwise

Then Φσ,τ is a (σ, τ)-monotonicity function. To see this, the most challenging part is
proving that Φσ,τ (F ) ⊐ Φσ,τ (G) if F ⊐ G and F ∈ Mσ⇒τ while G is a constant function.
We can prove this using the result that x ⊐ y implies addc(1, x) ⊒ y for all x, y. We have:

▶ Lemma 21. If MakeSM σ,τ = Φσ,τ then J(λx.s) tK ⊐τ Js[x := t]K, for s :: τ , t :: σ, x ∈ Xσ.

Proof Sketch. We expand MakeSM σ,τ to achieve J(λx.s) tKα = addcτ (costofσ(JtKα) +
1, JsKα[x:=JtK]) or J(λx.s) tKα = addcτ (1, JsKα[x:=JtK]). By induction on τ we prove that
addcτ (n, F ) ⊐τ F for all n ≥ 1. So either way, J(λx.s) tKα ⊐τ JsKα[x:=JtK]. Finally, we prove
a substitution lemma, JsKα[x:=JtKα] = Js[x := t]Kα, by induction on s. ◀

In examples in the remainder of this paper, we will assume that MakeSM σ,τ = Φσ,τ . With
these choices we do not only orient the β-rule (and thus satisfy item (2) of the compatibility
conditions), but also the η-reduction rules mentioned in Section 2.2.

▶ Lemma 22. If MakeSM σ,τ = Φσ,τ then for any F ∈ Xσ⇒τ we have: Jλx.F xK ⊐σ⇒τ JF K.

Proof Sketch. Since F ̸= x, we have JF Kα[x:=d] = α(F ) for all α and d. Consequently,
Jλx.F xK ⊒σ⇒τ d 7→ addcτ (1, F (d)) either way. We are done as: addcτ (1, F (d)) ⊐τ F (d). ◀

4.3 Creating strongly monotonic interpretation functions
We can use Theorem 17 to obtain bounds on the derivation heights of given terms. However,
to achieve this, we must find an interpretation function J, and prove that each Jf is in M.
We will now explore ways to construct such strongly monotonic functions. It turns out to
be useful to also consider weakly monotonic functions. In the following, we will write “f is
wm(A1, . . . , Ak; B)” to mean that f is a weakly monotonic function in A1 × · · · × Ak =⇒ B.

▶ Lemma 23. Let x1, . . . , xk be variables ranging over Mσ1 , . . . , Mσk
respectively; we shortly

denote this sequence x⃗. We let −−→
Mσ denote the sequence Mσ1 , . . . , Mσk

. Then:



C. Kop and D. Vale 11

1. if F (x⃗) = xi then F is wm(−−→Mσ; Mσi), and F is strict in argument i;
2. if F (x⃗) = xi(F1(x⃗), . . . , Fn(x⃗)), σi = τ1 ⇒ . . . ⇒ τn ⇒ ρ, and each Fj is wm(−−→Mσ; Mτj

)
then F is wm(−−→Mσ; Mρ) and for all p ∈ {1, . . . , k}: F is strict in argument p if p = i or
some Fj is strict in argument p;

3. if F (x⃗) = ⟨G1(x⃗), . . . , GK[ι](x⃗)⟩ and each Gj is wm(−−→Mσ;N) then F is wm(−−→Mσ; Mι), and
for all p ∈ {1, . . . , k}: F is strict in argument p if G1 is.

The last result uses functions mapping to N; these can be constructed using the observations:

4. if G(x⃗) = n for some n ∈ N then G is wm(−−→Mσ;N);
5. if G(x⃗) = xi

j and σi = ι ∈ S and 1 ≤ j ≤ K[ι], then G is wm(−−→Mσ;N), and G is strict in
argument i if j = 1;

6. if G(x⃗) = f(G1(x⃗), . . . , Gn(x⃗)) and all Gj are wm(−−→Mσ;N) and f is wm(N, . . . ,N;N),
then G is wm(−−→Mσ;N), and for all p ∈ {1, . . . , k}: G is strict in argument p if, for some
j ∈ {1, . . . , n}: Gj is strict in argument p and f is strict in argument j;

7. if G(x⃗) = F (x⃗)j and F is wm(−−→Mσ; Mι) and 1 ≤ j ≤ K[ι] then G is wm(−−→Mσ;N) and if
j = 1 then for all p ∈ {1, . . . , k}: G is strict in argument p if F is.

Proof Sketch. We easily see that in each case, F or G is in the given function space. To
show weak monotonicity, assume given both x⃗ and y⃗ such that each xi ⊒ yi; we then check
for all cases that F (x⃗) ⊒ F (y⃗), or G(x⃗) ≥ G(y⃗). For the strictness conditions, we assume
that xp ⊐ yp and similarly check all cases. ◀

The reader may recognise items (4–6): these largely correspond to the sufficient conditions
for a weakly monotonic function S in Lemma 9. For the function f in item (6), we could
for instance choose +, ∗ or max, where + is strict in all arguments. However, we can get
beyond Lemma 9 by using the other items; for example, applying variables to each other.

Now, if a function f is wm(−−→Mσ; Mτ ) and f is strict in all its arguments, then we easily
see that the function d1 7→ · · · 7→ dk 7→ f(d1, . . . , dk) is an element of Mσ1⇒...⇒σk⇒τ . To
illustrate how this can be used in practice, we show monotonicity of Jmap of Example 18:

▶ Example 24. Suppose Jmap(F, q) = ( F (⟨qc, qm⟩)c+ql∗F (⟨qc, qm⟩)c+ql+1 , ql , F (⟨qc, qm⟩)l ).
By (5), the functions (F, q) 7→ qi are wm(Mnat⇒nat, Mlist;N) for i ∈ {c, l, m} and moreover,
(F, q) 7→ qc is strict in argument 2. Hence, by (3), (F, q) 7→ ⟨qc, qm⟩ is wm(Mnat⇒nat, Mlist;
Mnat) and strict in argument 2. Therefore, by (2), (F, q) 7→ F (⟨qc, qm⟩) is wm(Mnat⇒nat,

Mlist; Mnat) and strict in both arguments. Hence, by (7), (F, q) 7→ F (⟨qc, qm⟩)c and (F, q) 7→
F (⟨qc, qm⟩)l are wm(Mnat⇒nat, Mlist;N) and the former is strict in both arguments.

Continuing like this, it is not hard to see how we can iteratively prove that (F, q) 7→
( F (⟨qc, qm⟩)c + ql ∗ F (⟨qc, qm⟩)c + ql + 1 , ql , F (⟨qc, qm⟩)l ) is wm(Mnat⇒nat, Mlist; Mlist) and
strict in both arguments, which immediately gives Jmap ∈ M(nat⇒nat)⇒list⇒list.

In practice, it is usually not needed to write such an elaborate proof: Lemma 23 essentially
tells us that if a function is built exclusively using variables and variable applications,
projections F (x⃗)j , constants, and weakly monotonic operators over the natural numbers,
then that function is weakly monotonic; we only need to check that the cost component
indeed increases if one of the variables xi is increased.

Unfortunately, while Lemma 23 is useful for rules like the ones for map, it is not enough
to handle functions like foldl, where the same function is repeatedly applied on a term. As
foldl-like functions occur more often in higher-order rewriting, we should also address this.

To handle iteration, we define: for a function Q ∈ A =⇒ A and natural number n, let
Qn(a) indicate repeated function application; that is, Q0(a) = a and Qn+1(a) = Qn(Q(a)).



12 Tuple Interpretations for Higher-Order Complexity

▶ Lemma 25. Suppose F is wm(−−→Mσ, Mτ⇒τ ) and G is wm(−−→Mσ;N). Suppose that for all
u1 ∈ Mσ1 , . . . , uk ∈ Mσk

and v ∈ Mτ we have: F (u1, . . . , uk, v) ⊒τ v. Then the function
(x1, . . . , xk) 7→ F (x1, . . . , xk)G(x1,...,xk) is wm(−−→Mσ, Mτ⇒τ ).

With this in hand, we can orient the foldl rules of Example 2.

▶ Example 26. For F ∈ Mnat⇒nat⇒nat and x, y ∈ Mnat, let Helper be defined by:

Helper(F, y, x) = ⟨F (x, y)c, max(xs, F (x, y)s)⟩.

Then Helper is wm(Mnat⇒nat⇒nat, Mnat, Mnat; Mnat) and strict in its third argument by
Lemma 23(1,2,3,6,7), Hence, Helper is wm(Mnat⇒nat⇒nat, Mnat; Mnat⇒nat). Since, in general,
costofnat(F (x, y)) ≥ costofnat(x), we have Helper(F, y, x) ⊒nat x. Using Lemma 25, we
therefore see that the function (F, z, xs) 7→ Helper(F, ⟨xsc, xsm⟩)xsl(z) is weakly monotonic,
and strict in its second argument. This ensures that the following function is in M.

Jfoldl(F, z, xs)K = Helper(F, ⟨xsc, xsm⟩)xsl(⟨1 + xsc + xsl + F (0nat, 0nat)c + zc, zs⟩)

This interpretation function is compatible with the rules for foldl in Example 2. First, we have
Jfoldl(F, z, nil)K = ⟨ 1 + F (0nat, 0nat)c + zc, zs ⟩ ⊐nat ⟨zc, zs⟩ = z, which orients the first rule.
For the second, we will use the general property that (**) F (addc(n, x), y) ⊒ addc(n, F (x, y))
(Lemma B.6). We denote A := ⟨xc+xsc, max(xs, xsm)⟩ and B := 1+xsc+xsl+F (0nat, 0nat)c+
zc. Then we have Jfoldl(F, z, x : xs)K = Helper(F, A)xsl+1(⟨B + xc + 1, zs⟩), which:

⊐nat Helper(F, A)xsl(Helper(F, A, ⟨B, zs⟩)) because ⟨B + xc + 1, zs⟩ ⊐nat ⟨B, zs⟩
⊒nat Helper(F, A)xsl(F (⟨B, zs⟩, A)) because Helper(F, n, m) ⊒nat F (m, n)
⊐nat Helper(F, ⟨xsc, xsm⟩)xsl(F (⟨B, zs⟩, x)) because A ⊒nat ⟨xsc, xsm⟩ and A ⊒nat x

⊒nat Helper(F, ⟨xsc, xsm⟩)xsl(addcnat(1 + xsc + xsl + F (0nat, 0nat)c, F (z, x))) by (**)
= Jfoldl(F, (F z x), xs)K.

The interpretation in Example 26 may seem too convoluted for practical use: it does not
obviously tell us something like “F is applied a linear number of times on terms whose size
is bounded by n”. However, its value becomes clear when we plug in specific bounds for F .

▶ Example 27. The function sum, defined in Example 1, could alternatively be defined in
terms of foldl: let sum(xs) → foldl(λxy.(x ⊕ y), 0, xs). To find an interpretation for this
function, we use the interpretation functions for 0, s, nil, cons and ⊕ from Example 10. Then
Jλxy.(x ⊕ y)K = d, e 7→ (dc + ec + es + 3, ds + es). We easily see that Helper(Jλxy.(x ⊕
y)K, ⟨xsc, xsm⟩, z) = ⟨zc + xsc + xsm + 3, zs + xsm⟩. Importantly, the iteration variable z is
used in a very innocent way: although its size is increased, this increase is by the same
number (xsm) in every iteration step. Moreover, the length of z does not affect the evaluation
cost. Hence, we can choose Jsum(xs)K = ⟨5 + xsc + xsl + xsl ∗ (xsc + xsm + 3), xsl ∗ xsm⟩.
This is close to the interpretation from Example 10 but differs both in a small overhead for
the β-reductions, and because our interpretation of foldl slightly overestimates the true cost.

This approach can be used to obtain bounds for any function that may be defined in
terms of foldl, which includes many first-order functions. For example, with a small change
to the signature of foldl, we could let rev(xs) = foldl(λxy.(y : x), nil, xs); however, this would
necessitate corresponding changes in the interpretation of foldl.

5 Finding complexity bounds

A key notion in complexity analysis of first-order rewriting is runtime complexity. In this
section, we will define a conservative notion of runtime complexity for higher-order term
rewriting, and show how our interpretations can be used to find runtime complexity bounds.



C. Kop and D. Vale 13

In first-order (and many-sorted) term rewriting, a defined symbol is any function symbol
f such that there is a rule f(ℓ1, . . . , ℓk) → r in the system; all other symbols are called
constructors. A ground constructor term is a ground term without defined symbols. A basic
term has the form f(s1, . . . , sk) with f a defined symbol and s1, . . . , sk all ground constructor
terms. The runtime complexity of a TRS is then a function φ in (N \ {0}) =⇒ N that maps
each n to a number φ(n) so that for every basic term s of size at most n: dhR(s) ≤ φ(n).

The comparable notion of derivational complexity considers the derivation height for
arbitrary ground terms of size n, but we will not use that here, since it can often give very
high bounds that are not necessarily representative for realistic use of the system. In practice,
a computation with a TRS would typically start with a main function, which takes data (e.g.,
natural numbers, lists) as input. This is exactly a basic term. Hence, the notion of runtime
complexity roughly captures the worst-case number of steps for a realistic computation.

It is not obvious how this notion translates to the higher-order setting. It may be tempting
to literally apply the definition to an AFS, but a “ground constructor term” (or perhaps
“closed constructor term”) is not a natural concept in higher-order rewriting; it does not
intuitively capture data. Moreover, we would like to create a robust notion which can be
extended to simple functional programming languages, so which is not subject to minor
language difference like whether partial application of function symbols is allowed.

Instead, there are two obvious ways to capture the idea of input in higher-order rewriting:

closed irreducible terms; this includes all ground constructor terms, but also for instance
λx.0 ⊕ x (but not λx.x ⊕ 0, since this can be rewritten following the rules in Example 1);
data: this includes only ground constructor terms with no higher-order subterms.

As we observed in Example 12, the size of a higher-order term does not capture its
behaviour. Hence, a notion of runtime complexity using closed irreducible terms is not
obviously meaningful—and might be closer to derivational complexity due to defined symbols
inside abstractions. Therefore, we here take the conservative choice and consider data.

▶ Definition 28. In an AFS (F , R), a data constructor is a function symbol c :: [ι1 × · · · ×
ιk] ⇒ ι0 with each ιi ∈ S, such that there is no rule of the form c(ℓ1, . . . , ℓk) → r. A data
term is a term c(d1, . . . , dk) such that c is a constructor and all di are also data terms.

In practice, a sort is defined by its data constructors. For example, nat is defined by 0
and s, and list by nil and cons. In typical examples of first- and higher-order term rewriting
systems, rules are defined to exhaustively pattern match on all constructors for a sort.

With this definition, we can conservatively extend the original notion of runtime complexity
to be applicable to both many-sorted and higher-order term rewriting.

▶ Definition 29. A basic term is a term of the form f(d1, . . . , dk) with all di data terms and
f not a data constructor. We let |d| denote the total number of symbols in a basic term d.

The runtime complexity of an AFS is a function φ ∈ (N \ {0}) =⇒ N so that for all n

and basic terms d, with |d| ≤ n: dhR(d) ≤ φ(n).

Note that if f(d1, . . . , dk) is a basic term, then f :: [ι1 × · · · × ιk] ⇒ τ with all ιi sorts.
Hence, higher-order runtime complexity considers the same (first-order) notion of basic terms
as the first-order case; terms such as map(F, s) or even map(λx.s(x), nil) are not basic. One
might reasonably question whether such a first-order notion is useful when studying the
complexity of higher-order term rewriting. However, we argue that it is: runtime complexity
aims to address the length of computations that begin at a typical starting point. When
performing a full program analysis of an AFS, the computation will still typically start in a
basic term, for instance; the entry-point symbol main applied to some user input d1, . . . , dk.



14 Tuple Interpretations for Higher-Order Complexity

▶ Example 30. We consider an AFS from the Termination Problem Database, v11.0 [16].

x ⊕ 0 →R x rec(0, y, F ) →R y

x ⊕ s(y) →R s(x ⊕ y) rec(s(x), y, F ) →R F · x · rec(x, y, F )
x ⊗ y →R rec(y, 0, λn.λm.x ⊕ m)

Here, rec :: [nat × nat × (nat ⇒ nat ⇒ nat)] ⇒ nat. The only basic terms have the form
sn(0) ⊕ sm(0) or sn(0) ⊗ sm(0). Using our method, we obtain cubic runtime complexity; to
be precise: O(m2 ∗ n). The interpretation functions are found in Appendix A.

To derive runtime complexity for both first- and higher-order rewriting, our approach is
to consider bounds for the functions Jf ; we only need to consider the first-order symbols f.
▶ Definition 31. Let P ∈ Mι1⇒...⇒ιm⇒κ be of the form P (x1, . . . , xm) = ⟨P1(x1, . . . , xm),
. . . , PK[κ](x1, . . . , xm)⟩. Then P is linearly bounded if each component function Pl of P

is upper-bounded by a positive linear polynomial, i.e., there is a constant a ∈ N such that
Pl(x1, . . . , xm) ≤ a∗(1+

∑m
i=1
∑K[ιi]

j=1 xi
j). We say that P is additive if there exists a constant

a ∈ N such that
∑K[κ]

l=1 Pl(x1, . . . , xm) ≤ a +
∑m

i=1
∑K[ιi]

j=1 xi
j.

By this definition, Pl is not required to be a linear function, only to be bounded by one.
This means that for instance min(xi

j , 2 ∗ xa
b ) can be used, but xi

j ∗ xa
b cannot. It is easily

checked that all the data constructors in this paper have an additive interpretation. For
example, for Jcons: (xc + xsc) + (xl + 1) + max(xs, xsm) ≤ 1 + xc + xs + xsc + xsl + xss.
▶ Lemma 32. Let (F , R) be an AFS or TRS that is compatible with a strongly monotonic
algebra with interpretation function J. Then:
1. if Jc is additive for all data constructors c, then there exists a constant b > 0 in N so

that for all data terms s: if |s| ≤ n then JsKl ≤ b ∗ n, for each component JsKl of JsK;
2. if Jc is linearly bounded for all data constructors c, then there exists a constant b > 0 in

N so that for all data terms s: if |s| ≤ n then JsKl ≤ 2b∗n, for each component JsKl of JsK.
By using Lemma 32, we quickly obtain some ways to bound runtime complexity:

▶ Corollary 33. Let (F , R) be an AFS or TRS that is compatible with a strongly monotonic
algebra with interpretation function J, and let FC denote its set of data constructors, and
FB the set of all other symbols f with a signature f :: [ι1 × · · · × ιm] ⇒ τ . Then:

if Jf is additive for all f ∈ FC ∪ FB, then (F , R) has linear runtime complexity;
if Jc is additive for all c ∈ FC and for all f ∈ FB, Jf(x⃗) = (P1(x⃗), . . . , Pk(x⃗)) where P1
is bounded by a polynomial, then (F , R) has polynomial runtime complexity;
if Jf is linearly bounded for all f ∈ FC ∪ FB, then (F , R) has exponential runtime
complexity.
We could easily use these results as part of an automatic complexity tool—and indeed,

combine them with other methods for complexity analysis. However, this is not truly our goal:
runtime complexity is only a part of the picture, especially in higher-order term rewriting
where we may want to analyse modules that get much more hairy input. Our technique aims
to give more fine-grained information, where we consider the impact of input with certain
properties—like the length of a list or the depth of a tree. For this, the person interested in
the analysis should be the one to decide on the interpretations of the constructors.

With this information given, though, it should be possible to automatically find interpret-
ations for the other functions. The search for the best strategy requires dedicated research,
which we leave to future work; however, we expect Lemmas 23 and 25 to play a large role.
We also note that while the cost component may depend on the other components, the other
components (which represent a kind of size property) typically do not depend on the cost.



C. Kop and D. Vale 15

6 On Related Work

Rewriting. There are several first-order complexity techniques based on interpretations. For
example, in [11], the consequences of using additive, linear, and polynomial interpretations
to the natural numbers are investigated; and in [26], context-dependent interpretations are
introduced, which map terms to real numbers to obtain tighter bounds. Most closely related
to our approach are matrix interpretations [21, 35], and a technique by the first author for
complexity analysis of conditional term rewriting [31]. In both cases, terms are mapped to
tuples as they are in our approach, although neither considers sort information, and matrix
interpretations use linear interpretation functions. Our technique is a generalisation of both.

Higher-order Rewriting. In higher-order term rewriting (but a formalism without λ-
abstraction), Baillot and Dal Lago [10] develop a version of higher-order polynomial interpret-
ations which, like the present work, is based on v.d. Pol’s higher-order interpretations [39].
In similar ways to our Section 5, the authors enforce polynomial bounds on derivational
complexity by imposing restrictions on the shape of interpretations. Their method differs
from ours in various ways, most importantly by mapping terms to N rather than tuples. In
addition, the interpretations are limited to higher-order polynomials. This yields an ordering
with the subterm property (i.e., f(. . . , s, . . . ) ⊐ s), which means that TRSs like Example 11
cannot be handled. Moreover, it is not possible to find a general interpretation for functions
like foldl or rec; the method can only handle instances of foldl with a linear function.

Beyond this, it unfortunately seems that relatively little work has thus far been done
on complexity analysis of higher-order term rewriting. However, complexity of functional
programs is an active field of research with a close relation to higher-order term rewriting.

Functional Programming. There are various techniques to statically analyse resource use
of functional programs. These may be fully automated [5, 9, 42], semi-automated designed to
reason about programmer specified-bounds [15, 23, 45], or even manual techniques, integrated
with type system or program logic semantics [14, 17]. We discuss the most pertinent ones.

An approach using rewriting for full-program analysis is to translate functional programs
to TRSs [6], which can be analysed using first-order complexity techniques. This takes
advantage of the large body of work on first-order complexity, but loses information; the
transformation often yields a system that is harder to analyse than the original.

The research methodology in most studies in functional programming differs significantly
from rewriting techniques. Nevertheless, there are some studies with clear connections to our
approach; in particular our separation of cost and size (and other structural properties). Most
relevant, in [19] the authors use a similar approach by giving semantics to a complexity-aware
intermediate language allowing arbitrary user-defined notions for size—such as list length or
maximum element size; recurrence relations are then extracted to represent the complexity.

Additionally, most modern complexity analysis is done via enhancements at the type
system level [2, 5, 20, 23, 28, 40]. For example, types may be annotated with a counter,
the heap size or a data type’s size measure. Notably, a line of work on Resource-Aware
ML [28, 30, 37] studies resource use of OCaml programs with methods based on Tarjan’s
amortized analysis [43]. Types are annotated with potentials (a cost measure), and type
inference generates a set of linear constraints which is sent over to an external solver. For
Haskell, Liquid Haskell [41, 44] provides a language to annotate types, which can be used to
prove properties of the program; this was recently extended to include complexity [23]. Unlike
RAML, this approach is not fully automatic: type annotations are checked, not derived.



16 Tuple Interpretations for Higher-Order Complexity

These works in functional programming have a different purpose from ours: they study
the resource use in a specific language, typically with a fixed evaluation strategy. Our method,
in contrast, allows for arbitrary evaluation, which could be specified to various strategies in
future work. Moreover, most of these works limit interest to full-program analysis. We do
this for runtime complexity, but our method offers more, by providing general interpretations
for individual functions like map or foldl. Similarly, most of these works impose additive type
annotations for the constructors; we do not restrict the constructor interpretations outside
Lemma 32. On the other hand, many do consider (shallow) polymorphism, which we do not.

While in functional programming one considers resource usage [28, 40], rewriting is
concerned with the number of steps, which can be translated to a form of resource measure if
the true cost of each step is kept low. This is achieved by imposing restrictions on reduction
strategy and term representation [1, 18]. Our approach carries the blessing of being general
and machine independent and the curse of not necessarily being a reasonable cost model.

7 Conclusion and Future Work

In this paper, we have introduced tuple interpretations for many-sorted and higher-order
term rewriting. This includes providing a new definition of strongly monotonic algebras, a
compatibility theorem, a function MakeSM that orients β- and η-reductions, and several
lemmas to prove monotonicity of interpretation functions. We also show that for certain
restrictions on interpretation functions, we find linear, polynomial or exponential bounds on
runtime complexity (for a simple but natural definition of higher-order runtime complexity).

Our type-based, semantical approach allows us to relate various “size” notions (e.g., list
length, tree depth, term size. etc.) to reduction cost, and thus offers a more fine-grained
analysis than traditional notions like runtime complexity. Most importantly, we can express
the complexity of a higher-order function in terms of the behaviour of its (function) arguments.
In the future, we hope that this could be used towards a truly higher-order complexity notion.

Some further examples and weaknesses. Aside from the three higher-order examples in
this paper, we have successfully applied our method to a variety of higher-order benchmarks in
the Termination Problem Database [16], all with additive interpretations for the constructors.
Two additional examples (filter and deriv) are included in Appendix A.

A clear weakness we discovered was that our method can only handle “plain function-
passing” systems [33]. That is, we typically do not succeed on systems where a variable of
function type occurs inside a subterm of base type, and occurs outside this subterm in the right-
hand side. Examples of such systems are ordrec, which has a rule ordrec(lim(F ), x, G, H) →R
H · F · (λn.ordrec(F · n, x, G, H)) with lim :: [nat ⇒ ord] ⇒ ord, and apply, which has a rule
lapply(x, fcons(F, xs)) →R F · lapply(x, xs) with fcons :: [(a ⇒ a) × listf] ⇒ listf.

Future work. We intend to consider the effect of different evaluation strategies, such as
innermost evaluation, weak-innermost evaluation (where rewriting below an abstraction is
not allowed, as is commonly the case in functional programming) or outermost evaluation.
This extension is likely to be an important step towards another goal: to more closely relate
our complexity notion to a reasonable measure of resource consumption in a rewriting engine.

In addition, we plan to extend first-order complexity techniques like dependency tuples [24],
which may allow us to overcome the weakness described above. Another goal is to enrich our
type system to support a notion of polymorphism and add polymorphic interpretations into
the play. We also aim to develop a tool to automatically find suitable tuple interpretations.



REFERENCES 17

References

1 B. Accatoli and U. Dal Lago. (leftmost-outermost) beta reduction is invariant, indeed.
LMCS, 2016. doi:10.2168/LMCS-12(1:4)2016.

2 S. Alves, D. Kesner, and D. Ventura. A quantitative understanding of pattern matching.
In Proc. TYPES, LIPIcs, 2020. doi:10.4230/LIPIcs.TYPES.2019.3.

3 T. Arai and G. Moser. Proofs of termination of rewrite systems for polytime functions.
In Proc. FSTTCS, 2005. doi:10.1007/11590156_4.

4 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. TCS, 2000.
doi:10.1016/S0304-3975(99)00207-8.

5 M. Avanzini and U. Dal Lago. Automating sized-type inference for complexity analysis.
In Proc. ICFP, 2017. doi:10.1145/3110287.

6 M. Avanzini, U. Dal Lago, and G. Moser. Analysing the complexity of functional programs:
Higher-order meets first-order. In Proc. ICFP, 2015. doi:10.1145/2784731.2784753.

7 M. Avanzini and G. Moser. Complexity analysis by rewriting. In Proc. FLOPS, 2008.
doi:10.1007/978-3-540-78969-7_11.

8 M. Avanzini and G. Moser. Closing the gap between runtime complexity and polytime
computability. In Proc. RTA, 2010. doi:10.4230/LIPIcs.RTA.2010.33.

9 Ralph B. Automated higher-order complexity analysis. TCS, 2004. doi:https://doi.
org/10.1016/j.tcs.2003.10.022.

10 P. Baillot and U. Dal Lago. Higher-order interpretations and program complexity. IC,
2016. doi:10.1016/j.ic.2015.12.008.

11 G. Bonfante, A. Cichon, J. Marion, and H. Touzet. Complexity classes and rewrite
systems with polynomial interpretation. In Proc. CSL, 1998. doi:10.1007/10703163_25.

12 G. Bonfante, J. Marion, and J. Moyen. On lexicographic termination ordering with space
bound certifications. In Proc. PSI, 2001. doi:10.1007/3-540-45575-2_46.

13 M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Alternating runtime and
size complexity analysis of integer programs. In Proc. TACAS, 2014. doi:10.1007/
978-3-642-54862-8_10.

14 Q. Carbonneaux, J. Hoffmann, T. Ramananandro, and Z. Shao. End-to-end verification
of stack-space bounds for C programs. SIGPLAN Not., 2014. doi:10.1145/2666356.
2594301.

15 E. Çiçek, D. Garg, and U. Acar. Refinement types for incremental computational
complexity. In Proc. ESOP, 2015. doi:10.1007/978-3-662-46669-8_17.

16 Community. Termination problem database, version 11.0. Directory
Higher_Order_Rewriting_Union_Beta/Mixed_HO_10/, 2019. URL: http:
//termination-portal.org/wiki/TPDB.

17 U. Dal Lago and M. Gaboardi. Linear dependent types and relative completeness. In
Proc. LICS, 2011. doi:10.1109/LICS.2011.22.

18 U. Dal Lago and S. Martini. Derivational complexity is an invariant cost model. In Proc.
FOPARA, 2010. doi:10.1007/978-3-642-15331-0_7.

19 N. Danner, D.R. Licata, and R. Ramyaa. Denotational cost semantics for functional
languages with inductive types. In Proc. ICFP, 2015. doi:10.1145/2784731.2784749.

20 A. Das, S. Balzer, J. Hoffman, F. Pfenning, and I. Santurkar. Resource-aware session
types for digital contracts, 2019. arXiv:1902.06056.

21 J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termina-
tion of term rewriting. JAR, 2008. doi:10.1007/11814771_47.

22 C. Fuhs and C. Kop. Polynomial interpretations for higher-order rewriting. In Proc.
RTA, 2012. doi:10.4230/LIPIcs.RTA.2012.176.

https://doi.org/10.2168/LMCS-12(1:4)2016
https://doi.org/10.4230/LIPIcs.TYPES.2019.3
https://doi.org/10.1007/11590156_4
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1145/3110287
https://doi.org/10.1145/2784731.2784753
https://doi.org/10.1007/978-3-540-78969-7_11
https://doi.org/10.4230/LIPIcs.RTA.2010.33
https://doi.org/https://doi.org/10.1016/j.tcs.2003.10.022
https://doi.org/https://doi.org/10.1016/j.tcs.2003.10.022
https://doi.org/10.1016/j.ic.2015.12.008
https://doi.org/10.1007/10703163_25
https://doi.org/10.1007/3-540-45575-2_46
https://doi.org/10.1007/978-3-642-54862-8_10
https://doi.org/10.1007/978-3-642-54862-8_10
https://doi.org/10.1145/2666356.2594301
https://doi.org/10.1145/2666356.2594301
https://doi.org/10.1007/978-3-662-46669-8_17
http://termination-portal.org/wiki/TPDB
http://termination-portal.org/wiki/TPDB
https://doi.org/10.1109/LICS.2011.22
https://doi.org/10.1007/978-3-642-15331-0_7
https://doi.org/10.1145/2784731.2784749
http://arxiv.org/abs/1902.06056
https://doi.org/10.1007/11814771_47
https://doi.org/10.4230/LIPIcs.RTA.2012.176


18 REFERENCES

23 M. A. T. Handley, N. Vazou, and G. Hutton. Liquidate your assets: Reasoning about
resource usage in liquid haskell. ACM POPL, 2019. doi:10.1145/3371092.

24 N. Hirokawa and G. Moser. Automated complexity analysis based on the dependency
pair method. In Proc. IJCAR, 2008. doi:10.1007/978-3-540-71070-7_32.

25 D. Hofbauer. Termination proofs by multiset path orderings imply primitive recursive
derivation lengths. TCS, 1992. doi:10.1007/3-540-53162-9_50.

26 D. Hofbauer. Termination proofs by context-dependent interpretations. In Proc. RTA,
2001. doi:10.1007/3-540-45127-7_10.

27 D. Hofbauer and C. Lautemann. Termination proofs and the length of derivations. In
Proc. RTA, 1989. doi:10.1007/3-540-51081-8_107.

28 J. Hoffmann, K. Aehlig, and M. Hofmann. Resource aware ml. In Proc. CAV, 2012.
doi:10.1007/978-3-642-31424-7_64.

29 J. Jouannaud and M. Okada. A computation model for executable higher-order algebraic
specification languages. In Proc. LICS, 1991. doi:10.1109/LICS.1991.151659.

30 D. M. Kahn and J. Hoffmann. Exponential automatic amortized resource analysis. In
Proc. FoSSaCS, 2020. doi:10.1007/978-3-030-45231-5_19.

31 C. Kop, A. Middeldorp, and T. Sternagel. Complexity of conditional term rewriting.
LMCS, 2017. doi:10.23638/LMCS-13(1:6)2017.

32 C. Kop and D. Vale. Tuple interpretations for higher-order complexity. In Proc. FSCD,
2021. To Appear.

33 K. Kusakari and M. Sakai. Enhancing dependency pair method using strong computability
in simply-typed term rewriting. AAECC, 2007. doi:10.1007/s00200-007-0046-9.

34 G. Moser. Derivational complexity of knuth-bendix orders revisited. In Proc. LPAR,
2006. doi:10.1007/11916277_6.

35 G. Moser, A. Schnabl, and J. Waldmann. Complexity analysis of term rewriting based on
matrix and context dependent interpretations. In Proc. FSTTCS, 2008. doi:10.4230/
LIPIcs.FSTTCS.2008.1762.

36 T. Nipkow. Higher-order critical pairs. In Proc. LICS, 1991. doi:10.1109/LICS.1991.
151658.

37 Y. Niu and J. Hoffmann. Automatic space bound analysis for functional programs with
garbage collection. In Proc. LPAR, 2018. doi:10.29007/xkwx.

38 E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002. doi:10.1007/
978-1-4757-3661-8.

39 J.C. van de Pol. Termination of Higher-order Rewrite Systems. PhD thesis, University
of Utrecht, 1996. URL: https://www.cs.au.dk/~jaco/papers/thesis.pdf.

40 V. Rajani, M. Gaboardi, D. Garg, and J. Hoffmann. A unifying type-theory for higher-
order (amortized) cost analysis. ACM POPL, 2021. doi:10.1145/3434308.

41 P. M. Rondon, M. Kawaguci, and R. Jhala. Liquid types. SIGPLAN Not., 2008.
doi:10.1145/1379022.1375602.

42 M. Sinn, F. Zuleger, and H. Veith. A simple and scalable static analysis for bound
analysis and amortized complexity analysis. In Proc. CAV, 2014. doi:10.1007/
978-3-319-08867-9_50.

43 R. E. Tarjan. Amortized computational complexity. ADM, 1985. doi:10.1137/0606031.
44 N. Vazou, P. M. Rondon, and R. Jhala. Abstract refinement types. In Proc. ESOP, 2013.

doi:10.1007/978-3-642-37036-6_13.
45 P. Wang, D. Wang, and A. Chlipala. Timl: A functional language for practical complexity

analysis with invariants. ACM POPL, 2017. doi:10.1145/3133903.

https://doi.org/10.1145/3371092
https://doi.org/10.1007/978-3-540-71070-7_32
https://doi.org/10.1007/3-540-53162-9_50
https://doi.org/10.1007/3-540-45127-7_10
https://doi.org/10.1007/3-540-51081-8_107
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1109/LICS.1991.151659
https://doi.org/10.1007/978-3-030-45231-5_19
https://doi.org/10.23638/LMCS-13(1:6)2017
https://doi.org/10.1007/s00200-007-0046-9
https://doi.org/10.1007/11916277_6
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1762
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1762
https://doi.org/10.1109/LICS.1991.151658
https://doi.org/10.1109/LICS.1991.151658
https://doi.org/10.29007/xkwx
https://doi.org/10.1007/978-1-4757-3661-8
https://doi.org/10.1007/978-1-4757-3661-8
https://www.cs.au.dk/~jaco/papers/thesis.pdf
https://doi.org/10.1145/3434308
https://doi.org/10.1145/1379022.1375602
https://doi.org/10.1007/978-3-319-08867-9_50
https://doi.org/10.1007/978-3-319-08867-9_50
https://doi.org/10.1137/0606031
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1145/3133903


C. Kop and D. Vale 19

A Extended examples

In this appendix, we provide the proof details for the examples that were discussed in the
text. We also include some higher-order examples that were only briefly mentioned in the
paper.

In all higher-order examples, we use Φσ,τ for MakeSM σ,τ .

A.1 Rev/Append
Recall the interpretations given in Example 10. We use q instead of xs to make the proofs
easier to read.

J0K = ⟨0, 0⟩ Jx ⊕ yK = ⟨xc + yc + ys + 1, xs + ys⟩
Js(x)K = ⟨xc, xs + 1⟩ Jsum(q)K = ⟨qc + 2ql + qlqm + 1, qlqm⟩

JnilK = ⟨0, 0, 0⟩ Jrev(q)K = ⟨qc + ql + ql
ql+1

2 + 1, ql, qm⟩
Jx : qK = ⟨xc + qc, 1 + ql, Jappend(q, q′)K = ⟨qc + q′

c + ql + 1, ql + q′
l ,

max(xs, qm)⟩ max(qm, q′
m)⟩

With this interpretation, all rules in Example 1 are oriented. First, we show the simple cases:
Jx ⊕ 0K = ⟨xc + 0 + 0 + 1, xs⟩ >nat ⟨xc, xs⟩ = JxK

Jsum(nil)K = ⟨0 + 0 + 0 + 1, 0 ∗ 0⟩ >nat ⟨0, 0⟩ = J0K
Jrev(nil)K = ⟨0 + 0 + 1, 0, 0⟩ >list ⟨0, 0, 0⟩ = JnilK

Jappend(nil, q)K = ⟨0 + qc + 0 + 1, 0 + ql, max(0, qm)⟩ >list ⟨qc, ql, qm⟩ = JqK

As for the cases that require a bit more explanation:
Jx ⊕ s(y)K = ⟨xc + yc + (ys + 1) + 1, (xs + ys) + 1⟩

= ⟨xc + yc + ys + 2, xs + ys + 1⟩
>nat ⟨xc + yc + 1, xs + ys + 1⟩
= Js(x ⊕ y)K

Jsum(x : q)K = ⟨(xc + qc) + 2(ql + 1) + (ql + 1) ∗ max(xs, qm) + 1, (ql + 1) ∗ max(xs, qm)⟩
= ⟨xc + qc + 2ql + ql ∗ max(xs, qm) + max(xs, qm) + 3,

ql ∗ max(xs, qm) + max(xs, qm)⟩
>nat ⟨xc + qc + 2ql + qlqm + xs + 2, qlqm + xs⟩

because max(xs, qm) ≥ qm and max(xs, qm) ≥ xs and 3 > 2
= ⟨(qc + 2ql + qlqm + 1) + xc + xs + 1, qlqm + xs⟩
= Jsum(q) ⊕ xK

Jappend(x : q, q′)K = ⟨(xc + qc) + q′
c + (1 + ql) + 1, (1 + ql) + q′

l , max(max(xs, qm), q′
m)⟩

= ⟨xc + qc + q′
c + ql + 2, ql + q′

l + 1, max(xs, qm, q′
m)⟩

>list ⟨xc + (qc + q′
c + ql + 1), 1 + (ql + q′

l ), max(xs, max(qm, q′
m))⟩

= Jx : append(q, q′)K
Jrev(x : q)K = ⟨(xc + qc) + (1 + ql) + (1 + ql) ∗ (2 + ql)/2 + 1, 1 + ql, max(xs, qm)⟩

= ⟨xc + qc + ql + (1 + ql) ∗ (2 + ql)/2 + 2, 1 + ql, max(xs, qm)⟩
= ⟨xc + qc + ql + (1 + ql) + ql ∗ (1 + ql)/2 + 2, 1 + ql, max(xs, qm)⟩

because for all n we have:
(n+1)(n+2)

2 = 2+3n+n2

2 = 1 + n + n+n2

2 = 1 + n + n∗(1+n)
2

= ⟨xc + qc + 2ql + ql ∗ (1 + ql)/2 + 3, 1 + ql, max(xs, qm)⟩
>list ⟨xc + qc + 2ql + ql(ql + 1)/2 + 2, ql + 1, max(qm, xs)⟩
= ⟨(qc + ql + ql

ql+1
2 + 1) + xc + ql + 1, ql + 1, max(qm, xs)⟩

= ⟨Jrev(q)Kc + Jx : nilKc + Jrev(q)Kl + 1,

Jrev(q)Kl + Jx : nilKl, max(Jrev(q)Km, Jx : nilKm)⟩
= Jappend(rev(q), x : nil)K



20 Tuple Interpretations for Higher-Order Rewriting

A.2 Quot/minus
The full TRS for division in Example 11 is:

minus(x, 0) → x minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0 quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

Recall the interpretations we used:

J0K = ⟨0, 0⟩ Jminus(x, y)K = ⟨xc + yc + ys + 1, xs⟩
Js(x)K = ⟨xc, xs + 1⟩ Jquot(x, y)K = ⟨xc + xs + yc + xs ∗ yc + xs ∗ ys + 1, xs⟩

Then:

Jminus(x, 0)K = ⟨xc + 1, xs⟩ >nat ⟨xc, xs⟩ = JxK
Jminus(s(x), s(y))K = ⟨xc + yc + (ys + 1) + 1, xs⟩ >nat ⟨xc + yc + ys + 1, xs⟩

And:

Jminus(s(x), s(y))K = ⟨xc + yc + (ys + 1) + 1, xs⟩
> ⟨xc + yc + ys + 1, xs⟩
= Jminus(x, y)K

Jquot(s(x), s(y))K = ⟨xc + (xs + 1) + yc + (xs + 1) ∗ yc + (xs + 1) ∗ (ys + 1) + 1, xs + 1⟩
= ⟨xc + xs + 1 + yc + xs ∗ yc + yc + xs ∗ (ys + 1) + ys + 1 + 1, xs + 1⟩
> ⟨(xc + yc + ys + 1) + xs + yc + xs ∗ yc + xs ∗ (ys + 1) + 1, xs + 1⟩
= ⟨Jquot(minus(x, y), s(y))Kc, Jquot(minus(x, y), s(y))Ks + 1⟩
= Js(quot(minus(x, y), s(y)))K

A.3 Extrec
Recall the system in Example 30:

x ⊕ 0 →R x rec(0, y, F ) →R y

x ⊕ s(y) →R s(x ⊕ y) rec(s(x), y, F ) →R F · x · rec(x, y, F )
x ⊗ y →R rec(y, 0, λn.λm.x ⊕ m)

With rec :: [nat × nat × (nat ⇒ nat ⇒ nat)] ⇒ nat. We let Mnat = N2 as before, and let:

J0K = ⟨0, 0⟩
Js(x)K = ⟨xc, xs + 1⟩

Jx ⊕ yK = ⟨xc + yc + ys + 1, xs + ys⟩
Jx ⊗ yK = ⟨1 + ys ∗ (xc + yc + xs ∗ (ys + 1)/2 + 3), xs ∗ ys⟩

Jrec(x, y, F )K = Helper(x, F )xs( ⟨1 + xc + yc + xs + F (0nat, 0nat)c, ys⟩ )
Helper(x, F ) = z 7→ ⟨F (x, z)c, max(zs, F (x, z)s)⟩

Then we always have (*A) Helper(x, F )(z) ⊒nat z because F (x, z)c ≥ zc which we will
see in Lemma B.8, and clearly max(zs, F (x, z)s) ≥ zs. Hence, the monotonicity require-
ments are satisfied. We also clearly have (*B) Helper(x, F )(z) ⊒nat F (x, z), since clearly
max(zs, F (x, z)s) ≥ F (x, z)s. We have:

Jx ⊕ 0K ⊐nat JxK:
Jx ⊕ 0K = ⟨xc + 0 + 0 + 1, xs + 1⟩ = ⟨xc + 1, xs⟩ > ⟨xc, xs⟩ = JxK.
Jx ⊕ s(y)K ⊐nat Js(x ⊕ y)K:
Jx ⊕ s(y)K = ⟨xc +yc +(ys +1)+1, xs +(ys +1)⟩ > ⟨xc +yc +ys +1, xs +ys +1⟩ = Js(x ⊕ y)K



C. Kop and D. Vale 21

Jrec(0, y, F )K ⊐nat JyK:
Jrec(0, y, F )K = Helper(⟨0, 0⟩, F )0( ⟨1 + 0 + yc + 0 + F (0nat, 0nat)c, ys⟩ ) = ⟨1 + yc +
F (0nat, 0nat)c, ys⟩ ⊐nat ⟨yc, ys⟩ = JyK.
Jrec(s(x), y, F )K ⊐nat JF · x · rec(x, y, F )K:
Jrec(s(x), y, F )K = Helper(⟨xc, xs +1⟩, F )xs+1( ⟨1+xc +yc +(xs +1)+F (0nat, 0nat)c, ys⟩ ) =
Helper(⟨xc, xs +1⟩, F )(Helper(⟨xc, xs +1⟩, F )xs( ⟨2+xc +yc +xs +F (0nat, 0nat)c, ys⟩ )) ⊒nat
F (⟨xc, xs + 1⟩, Helper(⟨xc, xs + 1⟩, F )xs( ⟨2 + xc + yc + xs + F (0nat, 0nat)c, ys⟩ )) by (*B),
⊐nat F (⟨xc, xs⟩, Helper(⟨xc, xs⟩, F )xs( ⟨1+xc+yc+xs+F (0nat, 0nat)c, ys⟩ )) by monotonicity,
= F (x, Helper(x, F )xs( ⟨1 + xc + yc + xs + F (0nat, 0nat)c, ys⟩ )) = JF · x · rec(x, y, F )K.
Jx ⊗ yK ⊐nat Jrec(y, 0, λn.λm.x ⊕ m)K:

Jλn.λm.x ⊕ mK = n 7→ m 7→ ⟨xc + nc + mc + ms + 3, xs + ms⟩
Helper(y, Jλn.λm.x ⊕ mK) = m 7→ ⟨xc + yc + mc + ms + 3, xs + ms⟩
For given i, Helper(y, Jλn.λm.x ⊕ mK)i(m)s = (

∑i
j=0 xs) + ms = xs ∗ i + ms

Helper(y, Jλn.λm.x⊕mK)ys = m 7→ ⟨
∑ys

i=1(xc+yc+(xs∗i+ms)+3)+mc, ys∗xs+ms⟩ =
⟨ys ∗(xc +yc +ms +3)+xs ∗

∑ys
i=1(i)+mc, ys ∗xs +ms⟩ = ⟨ys ∗(xc +yc +ms +3)+xs ∗(ys ∗

(ys +1)/2)+mc, ys ∗xs +ms⟩ = ⟨ys ∗ (xc +yc +ms +xs ∗ (ys +1)/2+3)+mc, ys ∗xs +ms⟩
Hence, Jx ⊗ yK = ⟨1 + ys ∗ (xc + yc + xs ∗ (ys + 1)/2 + 3), xs ∗ ys⟩ ⊐nat ⟨ys ∗ (xc + yc + xs ∗
(ys + 1)/2 + 3) + 0, xs ∗ ys + 0⟩ = Jrec(y, 0, λn.λm.x ⊕ m)K

A.4 Filter
The next example also comes from the Termination Problem Database, version 11.0 [16].
This example was only briefly mentioned in the text, but included here to demonstrate that
our method can handle many typical examples of higher-order term rewriting systems.

rand(x) →R x filter(F, nil) →R nil
rand(s(x)) →R rand(x) filter(F, x : xs) →R consif(F · x, x, filter(F, xs))

bool(0) →R false consif(true, x, xs) →R x : xs

bool(s(0)) →R true consif(false, x, xs) →R xs

As we did in Section A.1, we will use the notation q instead of xs to avoid clutter in the
proof. We let Mnat = N2 and Mlist = N3 as before, and additionally let Mboolean = N (so
only a cost component and no size components). We let:

JtrueK = ⟨0⟩ Js(x)K = ⟨xc, xs + 1⟩ Jbool(x)K = ⟨xc + 1⟩
JfalseK = ⟨0⟩ JnilK = ⟨0, 0, 0⟩ Jrand(x)K = ⟨1 + xc + xs, xs⟩

J0K = ⟨0, 0⟩ Jx : qK = ⟨xc + qc, ql + 1, max(xs, qm)⟩
Jconsif(z, x, q)K = ⟨zc + xc + qc + 1, ql + 1, max(xs, qm)⟩

Jfilter(F, q)K = ⟨1 + (ql + 1) ∗ (2 + qc + F (⟨qc, qm⟩)c), ql, qm⟩ .

It is easy to see that monotonicity requirements are satisfied. We have:

Jrand(x)K ⊐nat JxK
Jrand(x)K = ⟨1 + xc + xs, xs⟩ ⊐nat ⟨xc, xs⟩ = JxK
Jrand(s(x))K ⊐nat Jrand(x)K
Jrand(s(x))K = ⟨1 + xc + xs + 1, xs + 1⟩ ⊐nat ⟨1 + xc + xs, xs⟩ = Jrand(x)K
Jbool(0)K ⊐boolean JfalseK
Jbool(0)K = ⟨0 + 1⟩ ⊐boolean ⟨0⟩ = JfalseK
Jbool(s(0))K ⊐boolean JtrueK
Jbool(0)K = ⟨0 + 1⟩ ⊐boolean ⟨0⟩ = JtrueK



22 Tuple Interpretations for Higher-Order Rewriting

Jconsif(true, x, q)K ⊐list Jx : qK
Jconsif(true, x, q)K = ⟨0+xc +qc +1, ql +1, max(xs, qm)⟩ ⊐list ⟨xc +qc, ql +1, max(xs, qm)⟩ =
Jx : qK
Jconsif(false, x, q)K ⊐list JqK
Jconsif(false, x, q)K = ⟨0 + xc + qc + 1, ql + 1, max(xs, qm)⟩ ⊐list ⟨qc, ql, qm⟩ = JqK
Jfilter(F, nil)K ⊐list JnilK
Jfilter(F, nil)K = ⟨1 + . . . , 0, 0⟩ ⊐list ⟨0, 0, 0⟩ = JnilK
Jfilter(F, x : q)K ⊐list Jconsif(F · x, x, filter(F, q))K
Jfilter(F, x : q)K = ⟨1+(ql+2)∗(2+xc+qc+F (⟨xc+qc, max(xs, qm)⟩)c), ql+1, max(xs, qm)⟩ =
⟨3+xc+qc+F (⟨xc+qc, max(xs, qm)⟩)c+(ql+1)∗(2+xc+qc+F (⟨xc+qc, max(xs, qm)⟩)c), ql+
1, max(xs, qm)⟩ ⊐list
⟨2 + xc + F (⟨xc, xs⟩)c + (ql + 1) ∗ (2 + qc + F (⟨qc, qm⟩)c), ql + 1, max(xs, qm)⟩ =
⟨F (x)c + xc + (1 + (ql + 1) ∗ (2 + qc + F (⟨qc, qm⟩)c)) + 1, ql + 1, max(xs, qm)⟩
= ⟨F (x)c + xc + Jfilter(F, q)Kc + 1, Jfilter(F, q)Kl + 1, max(xs, Jfilter(F, q)Km)⟩
= Jconsif(F · x, x, filter(F, q))K

A.5 Deriv
Our final example also comes from the termination problem database. This example seems
to be designed to calculate a function’s derivative. It is worth noting that all symbols other
than der are constructors.

der(λx.y) →R λz.0 der(λx.sin(x)) →R λz.cos(z)
der(λx.x) →R λz.1 der(λx.cos(x)) →R λz.min(cos(z))

der(λx.plus(F · x, G · x)) →R λz.plus(der(F ) · z, der(G) · z)
der(λx.times(F · x, G · x)) →R λz.plus(times(der(F ) · z, G · z), times(F · z, der(G) · z))

der(λx.ln(F · x)) →R λz.div(der(F ) · z, F · z)

With der :: [real ⇒ real] ⇒ real ⇒ real. We let Mreal = N3 where the first component indicates
cost, and the second and third component roughly indicate the number of plus/times/ln
occurrences and the number of times/ln occurrences respectively. We will denote xs for x2,
and x⋆ for x3. We use the following interpretation:

J0K = ⟨0, 0, 0⟩ Jplus(x, y)K = ⟨xc + yc, xs + ys + 1, x⋆ + y⋆⟩
J1K = ⟨0, 0, 0⟩ Jtimes(x, y)K = ⟨xc + yc, xs + ys + 1, x⋆ + y⋆ + 1⟩

Jcos(x)K = x Jln(x)K = ⟨xc, xs + 1, x⋆ + 1⟩
Jsin(x)K = x Jder(F )K = z 7→ ⟨

Jmin(x)K = ⟨xc, 0, 0⟩ 1 + F (z)c + 2 ∗ F (z)s + F (z)⋆ ∗ F (z)c,

Jdiv(x, y)K = ⟨xc + yc, 0, 0⟩ F (z)s ∗ (F (z)⋆ + 1),
F (z)⋆ ∗ (F (z)⋆ + 1) ⟩

It is easy to see that monotonicity requirements are satisfied. In addition, all the rules are
oriented by this interpretation:

Jder(λx.y)K ⊐real Jλz.0K

Note that by choice of MakeSM real,real, we have Jλx.yK = x 7→ ⟨1 + xc + yc, ys, y⋆⟩.
Jder(λx.y)K = z 7→ ⟨1+(1+zc +yc)+2∗ys +y⋆ ∗(1+zc +yc), ys ∗(y⋆ +1), y⋆ ∗(y⋆ +1)⟩ ⊐real
z 7→ ⟨1 + zc, 0, 0⟩ = Jλz.0K
Jder(λx.y)K ⊐real Jλz.0K



C. Kop and D. Vale 23

Note that by choice of MakeSM real,real, we have Jλx.xK = x 7→ ⟨1 + xc, xs, x⋆⟩.
Jder(λx.x)K = z 7→ ⟨1+(1+zc)+. . . , zs∗(z⋆+1), z⋆∗(z⋆+1)⟩ ⊐real z 7→ ⟨1+zc, 0, 0⟩ = Jλz.1K
Jder(λx.sin(x))K ⊐real Jλz.cos(z)K

Note that Jλx.sin(x)K = x 7→ ⟨1 + xc, xs, x⋆⟩
Jder(λx.sin(x))K = z 7→ ⟨1 + (1 + zc) + 2 ∗ zs + z⋆ ∗ (1 + zc), zs ∗ (z⋆ + 1), z⋆ ∗ (z⋆ + 1)⟩ ⊐real
z 7→ ⟨1 + zc, zs, z⋆⟩ = Jλz.cos(z)K
Jder(λx.cos(x))K ⊐real Jλz.min(cos(z))K
Jder(λx.cos(x))K = z 7→ ⟨1+(1+zc)+. . . , zs ∗(z⋆ +1), z⋆ ∗(z⋆ +1)⟩ ⊐real z 7→ ⟨1+zc, 0, 0⟩ =
Jλz.min(cos(z))K.
Jder(λx.plus(F · x, G · x))K ⊐real Jλz.plus(der(F ) · z, der(G) · z)K

Jλx.plus(F · x, G · x)K = x 7→ ⟨1 + F (x)c + G(x)c, F (x)s + G(x)s + 1, F (x)⋆ + G(x)⋆⟩
Jder(λx.plus(F · x, G · x))K = z 7→ ⟨1 + (1 + F (z)c + G(z)c) + 2 ∗ (F (z)s + G(z)s + 1) +
(F (z)⋆ + G(z)⋆) ∗ (1 + F (z)c + G(z)c), (F (z)s + G(z)s + 1) ∗ (F (z)⋆ + G(z)⋆ + 1), (F (z)⋆ +
G(z)⋆) ∗ (F (z)⋆ + G(z)⋆ + 1)⟩ ⊐real
z 7→ ⟨1 + F (z)c + G(z)c + 2 ∗ F (z)s + 2 ∗ G(z)s + 2 + F (z)⋆ ∗ F (z)c + G(z)⋆ ∗ G(z)c), F (z)s ∗
(F (z)⋆ + 1) + G(z)s ∗ (G(z)⋆ + 1) + 1, F (z)⋆ ∗ (F (z)⋆ + 1) + G(z)⋆ ∗ (G(z)⋆ + 1)⟩ =
z 7→ ⟨1 + (1 + F (z)c + 2 ∗ F (z)s + F (z)⋆ ∗ F (z)c) + (1 + G(z)c + 2 ∗ G(z)s + G(z)⋆ ∗
G(z)c), Jplus(der(F ) · z, der(G) · z)Ks, Jplus(der(F ) · z, der(G) · z)K⋆⟩ = Jλz.plus(der(F ) ·
z, der(G) · z)K
Jder(λx.times(F · x, G · x))K ⊐real Jλz.plus(times(der(F ) · z, G · z), times(F · z, der(G) · z))K

Jλx.times(F ·x, G ·x))K = x 7→ ⟨1+F (x)c +G(x)c, F (x)s +G(x)s +1, F (x)⋆ +G(x)⋆ +1⟩
Jtimes(der(F ) · z, G · z)K = ⟨1 + F (z)c + 2 ∗ F (z)s + F (z)⋆ ∗ F (z)c + G(z)c, F (z)s ∗
(F (z)⋆ + 1) + G(z)s + 1, F (z)⋆ ∗ (F (z)⋆ + 1) + G(z)⋆ + 1⟩
Jtimes(F · z, der(G) · z))K = ⟨1 + G(z)c + 2 ∗ G(z)s + G(z)⋆ ∗ G(z)c + F (z)c, G(z)s ∗
(G(z)⋆ + 1) + F (z)s + 1, G(z)⋆ ∗ (G(z)⋆ + 1) + F (z)⋆ + 1⟩

Jder(λx.times(F · x, G · x))K = z 7→ ⟨1 + cost, size, star⟩, where:
cost = (1+F (z)c+G(z)c)+2∗(F (z)s+G(z)s+1)+(F (z)⋆+G(z)⋆+1)∗(1+F (z)c+G(z)c);
size = (F (z)s + G(z)s + 1) ∗ (F (z)⋆ + G(z)⋆ + 2);
star = (F (z)⋆ + G(z)⋆ + 1) ∗ (F (z)⋆ + G(z)⋆ + 2).

We have size = F (z)s + G(z)s + 1 + (F (z)s + G(z)s + 1) ∗ (F (z)⋆ + G(z)⋆ + 1) ≥
F (z)s+G(z)s+1+F (z)s∗(F (z)⋆+1)+G(z)s∗(G(z)⋆+1)+1∗1 = (F (z)s∗(F (z)⋆+1)+G(z)s+
1)+(G(z)s ∗(G(z)⋆ +1)+F (z)s +1) = Jplus(times(der(F )·z, G·z), times(F ·z, der(G)·z))Ks.
The proof that star ≥ Jplus(times(der(F ) · z, G · z), times(F · z, der(G) · z))K⋆ is the same,
just with ·s replaced by ·⋆.
Finally, we have cost > F (z)c + G(z)c + 2 ∗ F (z)s + 2 ∗ G(z)s + 2 + 1 + F (z)c + G(z)c +
(F (z)⋆ + G(z)⋆) ∗ (F (z)c + G(z)c) =
1+1+F (z)c+2∗F (z)s+F (z)⋆∗F (z)c+G(z)c+1+G(z)c+2∗G(z)s+G(z)⋆∗G(z)c+F (z)c =
1 + Jplus(times(der(F ) · z, G · z), times(F · z, der(G) · z))Kc
Jder(λx.ln(F · x))K ⊐real Jλz.div(der(F ) · z, F · z)K

Jλx.ln(F · x)K = x 7→ ⟨F (x)c, F (x)s + 1, F (x)⋆ + 1⟩
Jder(λx.ln(F · x))K = z 7→ ⟨1 + F (z)c + 2 ∗ (F (z)s + 1) + (F (z)⋆ + 1) ∗ F (z)c, (F (z)s +
1) ∗ (F (z)⋆ + 2), (F (z)⋆ + 1) ∗ (F (z)⋆ + 2)⟩ ⊐real z 7→ ⟨F (z)c + 2 ∗ (F (z)s + 1) + (F (z)⋆ +
1) ∗ F (z)c, 0, 0⟩ = z 7→ ⟨F (z)c + 2 ∗ F (z)s + 2 + F (z)⋆ ∗ F (z)c + F (z)c, 0, 0⟩ = z 7→
⟨1 + (1 + F (z)c + 2 ∗ F (z)s + F (z)⋆ ∗ F (z)c) + F (z)c, 0, 0⟩ = Jλz.div(der(F ) · z, F · z)K



24 Tuple Interpretations for Higher-Order Rewriting

B Extended Proofs

In this section, we give extended proofs for some results stated in the paper. It is worth
noting that we make heavy use of function extensionality for functions in M; that is, if F

and G are both functions in some Mσ⇒τ , and F (x) = G(x) for all x ∈ Mσ, then F = G.
We do not prove Theorem 4 or Lemma 9 here since they are essentially simpler cases of

Theorem 17 and Lemma 23 respectively. Hence, we start with Section 4.

B.1 Proofs for Section 4.1
We start by proving the claim in the text that (Mσ,⊐σ, ⊒σ) is an extended well-founded set
for all types σ.

▶ Lemma 14. For all types σ, (Mσ,⊐σ, ⊒σ) is an extended well-founded set; that is:

⊐σ is well-founded and ⊒σ is reflexive;
both ⊐σ and ⊒σ are transitive;
for all x, y, z ∈ Mσ, x ⊐σ y implies x ⊒σ y and x ⊐σ y ⊒σ z implies x ⊐σ z.

Proof. We prove the result by induction on all types σ. For a base type ι, all items
are satisfied by the conditions we impose on extended well-founded sets (Aι, >ι, ≥ι). For
σ = τ ⇒ ρ we reason as follows.

⊐τ⇒ρ is well-founded and ⊒τ⇒ρ is reflexive.
Suppose, by contradiction, that there is an infinite chain F1 ⊐τ⇒ρ F2 ⊐τ⇒ρ . . . in Mτ⇒ρ.
Then by definition of ⊐τ⇒ρ: Mτ is non-empty, and for all x ∈ Mτ , F1(x) ⊐ρ F2(x) ⊐ρ . . ..
This induces an infinite ⊐ρ-chain in Mρ, contradicting the IH.
For reflexivity, notice that F ⊒τ⇒ρ F iff for all x ∈ Mτ , F (x) ⊒ρ F (x), which follows
directly by reflexivity of ⊒ρ (IH).
Both relations are transitive.
For ⊐τ⇒ρ. Suppose F ⊐τ⇒ρ G ⊐τ⇒ρ H, then for all x ∈ Mτ , F (x) ⊐ρ G(x) ⊐ρ H(x)
holds by definition of ⊐τ⇒ρ. The IH give us F (x) ⊐ρ H(x), for all x ∈ Mτ , which is
exactly F ⊐τ⇒ρ H. Non-emptiness of Mτ holds by assumption. The case for ⊒τ⇒ρ is
analogous.
For all F, G, H in Mτ⇒ρ, F ⊐τ⇒ρ G implies F ⊒τ⇒ρ G, and F ⊐τ⇒ρ G ⊒τ⇒ρ H implies
F ⊐τ⇒ρ H.
Suppose F ⊐τ⇒ρ G. By definition, F (x) ⊐ρ G(x) for all x ∈ Mτ . By IH, F (x) ⊒ρ G(x),
for all x ∈ Mρ, which means F ⊒ρ G.
If, moreover, G ⊒τ⇒ρ H, the reasoning is similar: expand the definitions and apply the
induction hypothesis. ◀

In the text, we quietly asserted that Definition 16 is well-defined. Let us now prove this.

▶ Lemma B.1. For all terms s :: σ and suitable α as described in Definition 16 we have:
JsKα ∈ Ms.

Proof. We will prove by induction on the form of s: JsKα ∈ Ms, and for all variables x

occurring in the domain of α: either d 7→ JsK[x:=d] is a strongly monotonic function, or it is a
constant function. Recall the definition of JsKα.

JxKα = α(x) for variables x Jf(s1, . . . , sk)Kα = Jf(Js1Kα, . . . , JskKα)
Js · tKα = JsKα(JtKα) Jλx.sKα = MakeSM σ,τ (d 7→ JsKα[x:=d]) if x :: σ and s :: τ

Consider the form of s.



C. Kop and D. Vale 25

If s = x then JxKα = α(x) ∈ Mσ by assumption. Moreover, d 7→ JsKα[x:=d] is the function
d 7→ d, which is strongly monotonic: if a ⊐σ b then (d 7→ d)(a) = a ⊐σ b = (d 7→ d)(b).
For all other variables y, the function d 7→ JsKα[y:=d] is the constant function d 7→ α(x).
If s = t · u then t :: τ ⇒ σ and u :: τ . By the induction hypothesis, JtKα ∈ Mτ⇒σ ⊆
Mτ =⇒ Mσ, and JuKα ∈ Mτ . Hence, JtKα(JuKα) ∈ Mσ. Also by the induction
hypothesis, d 7→ JtKα[x:=d] is either strongly monotonic or constant, and the same holds
for d 7→ JuKα[x:=d]. We have four cases:

Both are constant: then d 7→ JtKα[x:=d](JuKα[x:=d]) is constant as well.
d 7→ JtKα[x:=d] is constant and d 7→ JuKα[x:=d] is strongly monotonic: then for a ⊐ b we
have: JtKα[x:=a] = JtKα[x:=b] = JtKα, and JuKα[x:=a] ⊐τ JuKα[x:=b]. Hence, by monoton-
icity of JtKα we have: JsK[x:=a] = JtKα(JuKα[x:=a]) ⊐σ JtKα(JuKα[x:=b]) = JsK[x:=b].
d 7→ JtKα[x:=d] is strongly monotonic and d 7→ JuKα[x:=d] is constant: then for a ⊐ b we
have: JtKα[x:=a] ⊐τ⇒σ JtKα[x:=b] and JuKα[x:=a] = JuKα[x:=b] = JuKα. By definition of
⊐τ⇒σ, we thus have JsK[x:=a] = JtKα[x:=a](JuKα) ⊐σ JtKα[x:=b](JuKα) = JsK[x:=b].
Both are strongly monotonic: then by monotonicity of JtKα[x:=a] we have that JsKα[x:=a] =
JtKα[x:=a](JuKα[x:=a]) ⊐σ JtKα[x:=a](JuKα[x:=b]), and this ⊐σ JtKα[x:=b](JuKα[x:=b]) =
JsKα[x:=b] because JtKα[x:=a] ⊐τ⇒σ JtKα[x:=b].

If s = f(s1, . . . , sk) with f :: [τ1 × · · · × τk] ⇒ σ then note that JsKα is exactly Jz ·
s1 · · · skKα[z:=Jf ] for a fresh variable z. Hence, the two statements we need to prove follow
by using first the case for a variable, and then k times the case for an application.
Finally, if s = λx.t with σ = τ ⇒ ρ, then JsKα = MakeSM τ,ρ(d 7→ JtKα[x:=d]). Since, by
the induction hypothesis, d 7→ JtKα[x:=d] is either a constant or a strongly monotonic
function from Mτ to Mρ, this is well-defined, and MakeSM τ,ρ(d 7→ JtKα[x:=d]) yields an
element of Mτ⇒ρ.
Now, let y be a variable. If y = x, then e 7→ JsKα[y:=e] is clearly a constant function:
JsKα[y:=e = MakeSM τ,ρ(d 7→ JtKα[x:=e][x:=d]) = MakeSM τ,ρ(d 7→ JtKα[x:=d]. Otherwise,
note that by the induction hypothesis either e 7→ JtKα[y:=e][x:=d] is constant, or it is
strongly monotonic. If it is constant, then for all a, b: d 7→ JtKα[y:=a][x:=d] = d 7→
JtKα[y:=b][x:=d], and hence MakeSM τ,ρ(d 7→ JtKα[y:=a][x:=d]) is the same as MakeSM τ,ρ(d 7→
JtKα[y:=b][x:=d]); hence, e 7→ JsKα[y:=e] is constant too. Otherwise, if this function is
strongly monotonic, then the function d 7→ JtKα[y:=a][x:=d] is pointwise greater than
d 7→ JtKα[y:=b][x:=d]. Hence, JsKα[y:=a] ⊐σ JsKα[y:=b] as well. ◀

To prove Theorem 17 we need an AFS version of the so-called Substitution Lemma. We
begin by giving a systematic way of extending a substitution (seen as a morphism between
terms) to a valuation, seen as morphism from terms to elements of AM.

▶ Definition B.2. Given a substitution γ = [x1 := s1, . . . , xn := sn] and a valuation α,
we define αγ as the valuation such that αγ(x) = α(x), if x /∈ dom(γ); and αγ(x) = JxγKα,
otherwise.

▶ Lemma B.3 (Substitution Lemma). For any substitution γ and valuation α, JsγKα = JsKαγ .
Additionally, if JsK ⊐σ JtK (JsK ⊒σ JtK), then JsγK ⊐σ JtγK (JsγK ⊒σ JtγK).

Proof. By inspection of Definition B.2 it can be easily shown by induction on s that the



26 Tuple Interpretations for Higher-Order Rewriting

following diagram commutes:

T (F , X )

T (F , X ) AMJ·Kαγ

γ
J·Kα

As a consequence, if JsKα ⊐σ JtK for any valuation α, then JsKαγ ⊐σ JtKαγ in particular. So
JsγKα ⊐σ JtKα. The case for ⊒σ is analogous. ◀

Theorem 17 is proved by induction on the rewrite relation.

▶ Theorem 17. If (F , R) is compatible with AM, then for all α, JsKα ⊐ JtKα when s →R t.

Proof. We reason by induction on s →R t. We have six cases to consider.

Suppose s →R t by ℓγ →R rγ. Compatibility gives JℓK ⊐ JrK, and by Lemma B.3 we
have JℓγK ⊐ JrγK.
The case (λx.s)t →R s[x := t] follows by Compatibility.
Suppose s →R t by f(. . . , s, . . . ) →R f(. . . , t, . . . ). By induction hypothesis, JsK ⊐ JtK. If
the reduction occurs in the first argument of f, then Jf(s, . . . )K ⊐ Jf(t, . . . )K by the fact
that Jf is in M. For the other cases, observe that Jf(Js1K, . . . , JsiK) ∈ M for all i, so
Jf(Js1K, . . . , JsiK, s) ⊐ Jf(Js1K, . . . , JsiK, t).
Suppose λx.s →R λx.t, with s →R t. If x /∈ fv(s) then d 7→ JsKα[x:=d] ⊐ d 7→ JtKα[x:=d]
are constant functions not in M. By Definition 13, MakeSM σ,τ (d 7→ JsKα[x:=d]) ⊐σ⇒τ

MakeSM σ,τ (d 7→ JtKα[x:=d]). On the other hand, if x ∈ fv(s), then d 7→ JsKα[x:=d] ⊐σ⇒τ

d 7→ JtKα[x:=d] are strongly monotonic functions, and the result follows by Definition 15.
The cases for application follow directly from Definition 13 and the induction hypothesis.

◀

B.2 Proofs for Section 4.2
We prove some results regarding the functions 0σ, addcσ and costofσ.

First, as stated in the text:

▶ Lemma B.4. For all types σ:

1. 0σ ∈ Mσ;
2. for all n ∈ N and x ∈ Mσ: addcσ(n, x) ∈ Mσ;
3. costofσ is weakly monotonic and strict in its first argument;
4. addcσ is weakly monotonic and strict in both its arguments.

Proof. By a mutual induction on σ.
(1) If σ = ι ∈ S, then 0σ = ⟨0, . . . , 0⟩ is clearly in σι. If σ = τ ⇒ ρ then 0τ⇒ρ = d 7→

addcρ(costofτ (d), 0ρ). Clearly costofτ (d) ∈ N and by induction hypothesis (1) 0ρ ∈ Mρ,
so by induction hypothesis (2) addcρ(costofτ (d), 0ρ) ∈ Mρ. We still need to see that
this function is weakly monotonic and strict in its argument. So suppose x ⊐ι y; the
case for x ⊒ι y is similar. Then costofτ (x) > costofτ (y) by induction hypothesis (3).
Hence, addcρ(costofτ (x), 0ρ) ⊐ρ addcρ(costofτ (y, 0ρ) by induction hypothesis (4); that is
0σ(x) ⊐ρ 0σ(y).



C. Kop and D. Vale 27

(2) If σ = ι ∈ S, then addcσ(n, x) = ⟨n + x1, x2, . . . , xK[ι]⟩ ∈ Mι. Otherwise, let
σ = τ ⇒ ρ, and let n ∈ N and F ∈ Mτ⇒ρ. Then addcτ⇒ρ(n, F ) = d 7→ addcρ(n, F (d)). By
induction hypothesis (2), addcρ(n, F (d)) ∈ Mρ, so addcτ⇒ρ(n, F ) ∈ Mτ =⇒ Mρ; we only
need to see that it is strongly monotonic. So let u ⊐τ w; we will see that addcτ⇒ρ(n, F, u) ⊐ρ

addcτ⇒ρ(n, F, w); the case for u ⊒τ w is similar. We have addcτ⇒ρ(n, F, u) = addcρ(n, F (u)).
Since F is strongly monotonic, F (u) ⊐ρ F (w). By induction hypothesis (4), addcρ(n, F (u)) ⊐ρ

addcρ(n, F (w)) = addcτ⇒ρ(n, F, w).
(3) Suppose x ⊐σ y; the case for x ⊒σ y is similar. If σ = ι ∈ S, then costofσ(x) = x1 >

y1 = costofσ(y) y definition of x ⊐ι y. If σ = τ ⇒ ρ then costofσ(x) = costofρ(x(0τ ))
Since x ⊐τ⇒ρ y we have x(0τ ) ⊐ρ y(0τ ). By induction hypothesis (3), costofρ(x(0τ )) >

costofρ(y(0τ )) follows as required.
(4) Suppose n ≥ m and x ⊒σ y. We will see that (a) addcσ(n, x) ⊒σ addcσ(m, y).and

(b) if n > m or x ⊐σ y then addcσ(n, x) ⊐σ addcσ(m, y). If σ = ι ∈ S, then addcσ(n, x) =
⟨n + x1, x2, . . . , xK[ι]⟩ ⊒ι ⟨m + y1, y2, . . . , yK[ι]⟩ because each xi ≥ yi and n ≥ m; in case (b)
we have n > m or x1 > y1 so certainly n + x1 > m + y1. If σ = τ ⇒ ρ then addcσ(n, x) =
d 7→ addcρ(n, x(d)). By definition, x(d) ⊒ρ y(d) and if x ⊐σ y even x(d) ⊐ρ y(d). Hence,
by induction hypothesis (4), addcρ(n, x(d)) ⊒ρ addcρ(m, y(d)) and if n > m or x ⊐σ y even
addcρ(n, x(d)) ⊐ρ addcρ(m, y(d)). This suffices, since ⊒τ⇒ρ and ⊐τ⇒ρ just do a place-wise
comparison. ◀

Next, the following lemmas provide basic properties of these functions (and how they
interact with each other).

▶ Lemma B.5. For all types σ, for all x ∈ Mσ:

1. addcσ(0, x) = x;
2. for all n, m ∈ N: addcσ(n, addcσ(m, x)) = addcσ(n + m, x);
3. if n > 0 then addcσ(n, x) ⊐σ x;
4. if y ∈ Mσ is such that x ⊐σ y then x ⊒σ addc(1, y);
5. for all n ∈ N: costofσ(addcσ(n, x)) = n + costofσ(x).

Proof. All items hold by induction on σ.
(1) If σ = ι ∈ S then addcσ(0, x) = ⟨0 + x1, x2, . . . , xK[ι]⟩ = ⟨x1, . . . , xK[ι]⟩ = x. If

σ = τ ⇒ ρ then addcσ(0, x) = d 7→ addcρ(0, x(d)) = (IH) d 7→ x(d) = d (extensionally).
(2) If σ = ι ∈ S, then addcσ(n, addcσ(m, x)) = ⟨n + m + x1, x2, . . . , xK[ι]⟩ = addcσ(n +

m, x). If σ = τ ⇒ ρ, then addcσ(n, addcσ(m, x)) = d 7→ addcσ(n, addcσ(m, x(d))) = (IH)
d 7→ addcσ(n + m, x(d)) = addcσ(n + m, x).

(3) Let n > 0. If σ = ι ∈ S then addcσ(n, x) = ⟨n+x1, x2, . . . , xK[ι]⟩ ⊐ι ⟨x1, . . . , xK[ι]⟩ =
x. If σ = τ ⇒ ρ then addcσ(n, x) = d 7→ addcρ(n, x(d)) and by the induction hypothesis,
addcρ(n, x(d)) ⊐ρ x(d). Hence, since ⊐σ does a pointwise comparison, d 7→ addcρ(n, x(d)) ⊐σ

d 7→ x(d) = x (extensionally).
(4) Let x ⊐σ y. If σ = ι ∈ S, then x = ⟨x1, . . . , xK[ι]⟩ and y = ⟨y1, . . . , yK[ι]]⟩,

and x ⊐ι y implies that x1 > y1 and each xi ≥ yi. But then also x1 ≥ 1 + y1, so
x = ⟨x1, . . . , xK[ι]⟩ ⊒ι ⟨1 + y1, y2, . . . , yK[ι]⟩ = addcι(1, y). If σ = τ ⇒ ρ, then x = d 7→ x(d)
and y = d 7→ y(d) and x ⊐σ y implies that x(d) ⊐ρ y(d) for all d ∈ Mτ . By the induction
hypothesis, x(d) ⊒ρ addcρ(1, y(d)) for all d, and therefore x = d 7→ x(d) ⊒τ⇒ρ d 7→
addcρ(1, y(d)) = addcτ⇒ρ(y).

(5) If σ = ι ∈ S, then costofσ(addcσ(n, x)) = costofσ(⟨n+x1, x2, . . . , xK[ι]⟩) = n+x1 =
n+costofσ(x). If σ = τ ⇒ ρ, then costofσ(addcσ(n, x)) = costofσ(d 7→ addcρ(n, x(d))) =
costofρ(addcρ(n, x(0τ ))), which by the induction hypothesis equals n + costofρ(x(0τ )) =
n + costofτ⇒ρ(x). ◀



28 Tuple Interpretations for Higher-Order Rewriting

▶ Lemma B.6. For all types σ, τ , F ∈ Mσ⇒τ , x ∈ Mσ and n ∈ N:
F (addcσ(n, x)) ⊒σ addcτ (n, F (x)).

Proof. By induction on n. If n = 0, then F (addcσ(n, x)) = F (x) = addcτ (n, F (x)) by
Lemma B.5(1). If n = i+1, then addcσ(n, x) = addcσ(1, addcσ(i, x)) by Lemma B.5(2), which
⊐σ addcσ(i, x) by Lemma B.5(3). Hence, by monotonicity, F (addcσ(n, x)) ⊐τ F (addcσ(i, x)).
By the induction hypothesis, F (addcσ(i, x)) ⊒τ addcτ (i, F (x)), so F (addcσ(n, x)) ⊐τ

addcτ (i, F (x)). By Lemma B.5(4) therefore F (addcσ(n, x) ⊒τ addcτ (1, addcτ (i, F (x)). By
Lemma B.5(2) we thus have F (addcσ(n, x)) ⊒τ (i + 1, F (x)). ◀

▶ Lemma B.7. For all types σ and all x ∈ Mσ: x ⊒σ addcσ(costofσ(x), 0σ).

Proof. By induction on σ.
If σ = ι ∈ S then x = ⟨x1, x2, . . . , xK[ι]⟩ ⊒ι ⟨x1, 0, . . . , 0⟩ = addcι(x1, ⟨0, . . . , 0⟩) =

addcι(costofι(x), 0ι). In the remainder, we consider the case σ = τ ⇒ ρ.
In this case, x = d 7→ x(d) (extensionally), which by the induction hypothesis ⊒τ⇒ρ d 7→

addcρ(costofρ(x(d)), 0ρ). On the other hand, addcσ(costofσ(x), 0σ) = d 7→
addcρ(costofσ(x), 0σ(d)) = d 7→ addcρ(costofσ(x), addcρ(costofτ (d), 0ρ)). By Lemma
B.5(2) this is exactly d 7→ addcρ(costofσ(x) + costofτ (d), 0ρ).

Hence, by monotonicity of addcρ (Lemma B.4(4)), it suffices if we can see that, for all d,
costofρ(x(d)) ≥ costofσ(x)+costofτ (d). To see this, note that by the induction hypothesis,
d ⊒τ addcτ (costofτ (d), 0τ ). Hence, x(d) ⊒ρ x(addcτ (costofτ (d), 0τ ) by monotonicity of
x. By Lemma B.6 we have x(d) ⊒ρ addcρ(costofτ (d), x(0τ )). Hence, by monotonicity of
costofρ (Lemma B.4(3)), costofρ(x(d)) ≥ costofρ(addcρ(costofτ (d), x(0τ ))). By Lemma
B.5(5), this = costofτ (d) + costofρ(x(0τ )) = costofτ (d) + costofσ(x). Hence, we have
obtained the required inequality costofρ(x(d)) ≥ costofσ(x) + costofτ (d). ◀

▶ Lemma B.8. For F ∈ Mσ⇒τ and x ∈ Mσ we have: costofτ (F (x)) ≥ costofσ(x).

Proof. Let n := costofσ(x). By Lemma B.7, x ⊒σ addcσ(costofσ(x), 0σ) = addcσ(n, 0σ).
Hence, by monotonicity of F , F (x) ⊒τ F (addcσ(n, 0σ)). By Lemma B.6, this implies that
F (x) ⊒τ addcτ (n, F (0σ)). Since costofτ is strict in its first argument by Lemma B.4(3), we
thus have costofτ (F (x)) ≥ costofσ(addcτ (n, F (0σ))), which ≥ n by Lemma B.5(5). ◀

With these lemmas, we can prove the lemma stated in the text: that the function in
Definition 20 is indeed a (σ, τ)-monotonicity function.

▶ Lemma B.9. Let σ, τ be simple types. Then Φσ,τ is a (σ, τ)-monotonicity function.

Proof. First, we must see that Φσ,τ maps each element of Cσ,τ to an element of Mσ,τ . Thus,
let F ∈ Cσ,τ . There are two cases:

F is a constant function in Mσ =⇒ Mτ .
Then Φσ,τ (F ) is the function d 7→ addcτ (costofσ(d) + 1, F (d)). Since F ∈ Mσ =⇒ Mτ

we have F (d) ∈ Mτ so addcτ (costofσ(d) + 1, F (d)) ∈ Mτ by Lemma B.4(2); hence,
d 7→ addcτ (costofσ(d) + 1, F (d)) ∈ Mσ =⇒ Mτ .
It remains to be seen that this function is (a) weakly monotonic, and (b) strict in its only
argument. We show only the latter; the former is very similar.
Let x, y ∈ Mσ with x ⊐σ y. Then by Lemma B.4(3), costofσ(x) > costofσ(y), which
implies costofσ(x) + 1 > costofσ(y) + 1 as well. Moreover, since F is constant, we
have F (x) = F (y), so certainly F (x) ⊒τ F (y). Thus, by Lemma B.4(4), we have
addcτ (costofσ(x) + 1, F (x)) ⊐τ addcτ (costofσ(y) + 1, F (y)).



C. Kop and D. Vale 29

F is a function in Mσ⇒τ ; that is, a strongly monotonic function in Mσ =⇒ Mτ .
Then Φσ,τ (F ) is the function d 7→ addcτ (1, F (d)). By Lemma B.4(2) this function is
indeed in Mσ =⇒ Mτ . To see that it is monotonic, suppose that x ⊐σ y; the case for
x ⊒σ y is similar. Then F (x) ⊐τ F (y) by strong monotonicity of F . By Lemma B.4(4),
addcτ (1, F (x)) ⊐τ addcτ (1, F (y)) as required.

Second, we will see that Φσ,τ is strongly monotonic. That is, for F, G ∈ Cσ,τ : (a) if
F (x) ⊒τ G(x) for all x ∈ Mσ then Φσ,τ (F ) ⊒σ⇒τ Φσ,τ (G); (b) if F (x) ⊐τ G(x) for all
x ∈ Mσ then Φσ,τ (F ) ⊐σ⇒τ Φσ,τ (G). We will only show (b); the proof of (a) is parallel.
There are four cases to consider:

F, G are both constant functions. Then Φσ,τ (F ) = d 7→ addcτ (costofσ(d)+1, F (d)) ⊐σ⇒τ

d 7→ addcτ (costofσ(d)+1, G(d)) = Φσ,τ (G) by Lemma B.4(4) and because F (d) ⊐τ G(d).
F, G are both in Mσ⇒τ . Then we must see that d 7→ addcτ (1, F (d)) ⊐τ d 7→ addcτ (1, G(d)),
so that addcτ (1, F (d)) ⊐τ addcτ (1, G(d)) for all d. This holds by Lemma B.4(4) because
F (d) ⊐τ G(d) (by definition of F ⊐ G).
F is in Mσ⇒τ and G is constant. Then we must see that for all d ∈ Mσ we have:
addcτ (1, F (d)) ⊐τ addcτ (costofσ(d) + 1, G(d)). By monotonicity of addcτ (Lemma
B.4(4)) and by Lemma B.5(2) it suffices if F (d) ⊐τ addcτ (costofσ(d), G(d)).
So consider a fixed d. By Lemma B.7, d ⊒σ addcσ(costofσ(d), 0σ). Hence, by mono-
tonicity of F we have F (d)) ⊒τ F (addcσ(costofσ(d), 0σ))). By Lemma B.6, then
F (addcσ(costofσ(d), 0σ)) ⊒τ addcτ (costofσ(d), F (0σ)). by Lemma B.4(4). By as-
sumption, F (0σ) ⊐τ G(0σ), and since G is a constant function, G(0σ) = G(d). Hence,
F (d) ⊐τ addcτ (costofσ(d), G(d)).
F is a constant function and G is strongly monotonic. This actually cannot happen!
To see this, let m := costofτ (F (0σ)). Note that F (0σ) = F (addcσ(m, 0σ)) since F is
constant, ⊐τ G(addcσ(m, 0σ)) since F ⊐ G, which ⊒τ addcτ (m, G(0σ)) by Lemma B.6.
Hence, F (0σ) ⊐τ addcτ (m, G(0σ)), so by Lemma B.4(3) we have m = costofτ (F (0σ)) >

costofτ (addcτ (m, G(0σ))) = m + costofτ (G(0σ)) ≥ m by Lemma B.5(5). This gives
the required contradiction. ◀

In addition, we can formally prove that both β- and η-reduction are oriented.

▶ Lemma 21. If MakeSM σ,τ = Φσ,τ then J(λx.s) tK ⊐τ Js[x := t]K, for s :: τ , t :: σ, x ∈ Xσ.

Proof. We have either J(λx.s) · tKα = addcτ (costofσ(JtKα) + 1, JsKα[x:=JtK]) or J(λx.s) · tKα =
addcτ (1, JsKα[x:=JtK]). By Lemma B.5(3) we have J(λx.s) · tKα ⊐τ JsKα[x:=JtK] in both cases.
By Lemma B.3, JsKα[x:=JtK] = Js[x := b]Kα. This completes the proof. ◀

▶ Lemma 22. If MakeSM σ,τ = Φσ,τ then for any F ∈ Xσ⇒τ we have: Jλx.F xK ⊐σ⇒τ JF K.

Proof. Since F ̸= x, we have that d 7→ JF · xKα[x:=d] = d 7→ α(F )(d), which by extensionality
is exactly α(F ). Since α(F ) is monotonic by assumption on α, we have Jλx.F xKα =
Φσ,τ (d 7→ JF · xKαx:=d) = Φσ,τ (α(F )) = addcσ,τ (1, α(F )). By Lemma B.5(3) this ⊐σ⇒τ

α(F ) = JF K. ◀

B.3 Proofs for Section 4.3
▶ Lemma 25. Suppose F is wm(−−→Mσ, Mτ⇒τ ) and G is wm(−−→Mσ;N). Suppose that for all
u1 ∈ Mσ1 , . . . , uk ∈ Mσk

and v ∈ Mτ we have: F (u1, . . . , uk, v) ⊒τ v. Then the function
(x1, . . . , xk) 7→ F (x1, . . . , xk)G(x1,...,xk) is wm(−−→Mσ, Mτ⇒τ ).



30 Tuple Interpretations for Higher-Order Rewriting

Proof. Let Q indicate the function (x1, . . . , xk, y) 7→ F (x1, . . . , xk)G(x1,...,xk)(y).
First, we note that Q indeed maps to Mτ⇒τ . So let u1 ∈ Mσ1 , . . . , uk ∈ Mσk

. Since
F (u1, . . . , uk) ∈ Mτ⇒τ ⊆ Mτ =⇒ Mτ , by definition of repeated function application
F (u1, . . . , uk)G(u1,...,uk) ∈ Mτ =⇒ Mτ as well. We must show that for all v, v′ ∈ Mτ , if v ⊐τ

v′ then Q(u1, . . . , uk, v1) = F (u1, . . . , uk)G(u1,...,uk)(v) ⊐τ F (u1, . . . , uk)G(u1,...,uk)(v′) =
Q(u1, . . . , uk, v′). We will show this by induction on the natural number G(u1, . . . , uk).

If G(u1, . . . , uk) = 0 then F (u1, . . . , uk)G(u1,...,uk)(v) = v ⊐τ v′ by assumption, which
= F (u1, . . . , uk)G(u1,...,uk)(v′).
If G(u1, . . . , uk) = n + 1 then note that, because F (u1, . . . , uk) ∈ Mτ⇒τ (so this
defines a strongly monotonic function), we have F (u1, . . . , uk, v) ⊐τ F (u1, . . . , uk, v′).
Hence,F (u1, . . . , uk)G(u1,...,uk)(v) = F (u1, . . . , uk)n(F (u1, . . . , uk, v)) (by definition), ⊐τ

F (u1, . . . , uk)n(F (u1, . . . , uk, v′)) by the induction hypothesis. This suffices, as this equals
F (u1, . . . , uk)G(u1,...,uk)(v′).

It remains to be shown that Q is weakly monotonic in its first k arguments. So suppose
u′

1 ∈ Mσ1 , . . . , u′
k ∈ Mσk

. We must show that Q(u1, . . . , uk) ⊐τ⇒τ Q(u′
1, . . . , u′

k). We
will do this by showing that (**), for all n, m with n ≥ m we have F (u1, . . . , uk)n ⊒τ⇒τ

F (u′
1, . . . , u′

k)m. Then Q(u1, . . . , uk) ⊒τ⇒τ Q(u′
1, . . . , u′

k) follows because G(u1, . . . , uk) ≥
G(u′

1, . . . , u′
k) (by weak monotonicity of G).

To prove (**), we use induction on n.

If n = 0, then also m = 0. For all v ∈ Mτ we have F (u1, . . . , uk)n(v) = v =
F (u′

1, . . . , u′
k)m.

If n = i+1 = m, then let v ∈ Mτ ; we must show that F (u1, . . . , uk)i(F (u1, . . . , uk, v)) ⊒τ

F (u′
1, . . . , u′

k)i(F (u′
1, . . . , u′

k, v). But we know that F (u1, . . . , uk, v) ⊒τ F (u′
1, . . . , u′

k, v):
this holds because F is wm(−−→Mσ; Mτ⇒τ ). Since we have already seen that, for all i,
F (u1, . . . , uk)i ∈ Mτ⇒τ and is therefore also a weakly monotonic function,
F (u1, . . . , uk)i(F (u1, . . . , uk, v)) ⊒τ F (u1, . . . , uk)i(F (u′

1, . . . , u′
k, v)). By the induction

hypothesis, F (u1, . . . , uk)i ⊒τ⇒τ F (u′
1, . . . , u′

k)i. By definition, this means that we have
F (u1, . . . , uk)i(F (u′

1, . . . , u′
k, v)) ⊒τ F (u′

1, . . . , u′
k)i(F (u′

1, . . . , u′
k, v)) = F (u′

1, . . . , u′
k)m(v).

We complete by transitivity of ⊒τ .
If n = i+1 and i ≥ m, then let v ∈ Mτ ; we must show F (u1, . . . , uk)i(F (u1, . . . , uk, v)) ⊒τ

F (u′
1, . . . , u′

k)m(v). By assumption on F we have F (u1, . . . , uk, v) ⊒τ v. As we saw before,
F (u1, . . . , uk)i is monotonic, so also F (u1, . . . , uk)i(F (u1, . . . , uk, v)) ⊒τ F (u1, . . . , uk)i(v).
By the induction hypothesis, F (u1, . . . , uk)i(v) ⊒τ F (u′

1, . . . , u′
k)m(v). ◀

B.4 Proofs for section 5
We use the following observation to prove the results from this section.

▷ Claim 10. If 2 ≤ x1, . . . , xm, then
m∑

i=1
xi ≤

m∏
i=1

xi.

Proof. This holds because for x, y ≥ 2 we have x + y ≤ x ∗ y (since (2 + a) + (2 + b) =
4 + a + b ≤ 4 + 2a + 2b + ab = (2 + a) ∗ (2 + b)), and by induction on m. ◁

▶ Lemma 32. Let (F , R) be an AFS or TRS that is compatible with a strongly monotonic
algebra with interpretation function J. Then:

1. if Jc is additive for all data constructors c, then there exists a constant b > 0 in N so
that for all data terms s: if |s| ≤ n then JsKl ≤ b ∗ n, for each component JsKl of JsK;



C. Kop and D. Vale 31

2. if Jc is linearly bounded for all data constructors c, then there exists a constant b > 0 in
N so that for all data terms s: if |s| ≤ n then JsKl ≤ 2b∗n, for each component JsKl of JsK.

Proof. 1. Since the interpretation Jc = ⟨P1, . . . , PK[κ]⟩ for each constructor c is additive:
by Definition 31, for each c ∈ F , there exists a constant ac such that for all (x1, . . . , xm),∑K[κ]

l=1 Pl(x1, . . . , xm) ≤ ac +
∑m

i=1
∑K[κ]

j=1 xi
j . Let us set a to be the maximum of such ac,

so for the sum of components Pl of Jc we have:

K[κ]∑
l=1

Pl(x1, . . . , xm) ≤ a +
m∑

i=1

K[ιi]∑
j=1

xi
j . (1)

We prove by induction on the size of s :: κ that
∑K[κ]

l=1 JsKl ≤ a ∗ |s|. Then certainly
JsKl ≤ a ∗ |s| holds for any component JsKl, and the first part of the lemma holds.

For the base case, |s| = 1, s is a constant c and
∑K[ι]

l=1 JcKl ≤ ac ≤ a, by assumption (1)

Let |s| > 1; then s = c(d1, . . . , dm) and using (1) above, we can expand the sum, as
follows:

K[κ]∑
l=1

Jc(d1, . . . , dm)Kl =
K[κ]∑
l=1

Pl(Jd1K, . . . , JdmK)

(1)
≤ a +

m∑
i=1

K[ιi]∑
j=1

JdiKj

(IH)
≤ a +

m∑
i=1

a ∗ |di|

= a ∗

(
1 +

m∑
i=1

|di|

)
= a ∗ |s|.

Hence, we are done choosing b := a.

2. The proof follows the same structure as before: by Definition 31, each Jc = ⟨P1, . . . , PK[κ]⟩
is now linearly bounded; that is, for each c ∈ F , there exists a constant ac such that
for all (x1, . . . , xm) we have Pl(x1, . . . , xm) ≤ ac ∗ (1 +

∑m
i=1
∑K[ιi]

j=1 xi
j). Let us set, as

before, a to be the maximum of such ac and define k = max(2, maxi K[ιi]). Notice that
k is determined when we define the interpretation’s domain, so it does not depend on the
size of s.

We prove by induction on the size of s that JsKl ≤ 2(a∗k)∗|s|, for each component Pl of JsK.
In the base case, where s is a constant constructor, we have that JcKl ≤ ac ≤ a ∗ k < 2a∗k



32 Tuple Interpretations for Higher-Order Rewriting

follows trivially. For the inductive step, we have s = c(d1, . . . , dm). Then:

Pl(Jd1K, . . . , JdmK) ≤ ac ∗ (1 +
m∑

i=1

K[ιi]∑
j=1

JdiKj)

≤ a ∗ (2 ∗
m∑

i=1

K[ιi]∑
j=1

JdiKj) because 1 + z ≤ 2z for z ≥ 1

(IH)
≤ 2 ∗ a ∗

m∑
i=1

K[ιi]∑
j=1

2a∗k∗|di|


≤ 2 ∗ a ∗ k ∗

m∑
i=1

2a∗k∗|di|

≤ (2 ∗ a ∗ k) ∗
m∏

i=1
2a∗k∗|di| by claim (10)

≤ 2a∗k ∗
m∏

i=1

(
2a∗k∗|di|

)
because 2z ≤ 2z if z ≥ 2

= 2(a∗k) ∗ 2
(a∗k)∗

m∑
i=1

|di|

= 2
a∗k

(
1+

m∑
i=1

|di|

)
= 2(a∗k)∗|s|.

Hence, we are done choosing b := a ∗ k.
◀


	1 Introduction
	2 Preliminaries
	2.1 First-Order Many-Sorted Rewriting
	2.2 Higher-Order Rewriting
	2.3 Functions and orderings

	3 First-Order tuple interpretation
	4 Higher-order tuple interpretations
	4.1 Strongly monotonic algebras
	4.2 Interpreting abstractions
	4.3 Creating strongly monotonic interpretation functions

	5 Finding complexity bounds
	6 On Related Work
	7 Conclusion and Future Work
	A Extended examples
	A.1 Rev/Append
	A.2 Quot/minus
	A.3 Extrec
	A.4 Filter
	A.5 Deriv

	B Extended Proofs
	B.1 Proofs for Section 4.1
	B.2 Proofs for Section 4.2
	B.3 Proofs for Section 4.3
	B.4 Proofs for section 5


