
Cutting a proof into bite-sized chunks1

Incrementally proving termination in higher-order term rewriting2

Cynthia Kop � Â3

Department of Software Science, Radboud University Nijmegen, The Netherlands4

Abstract5

This paper discusses a number of methods to prove termination of higher-order term rewriting6

systems, with a particular focus on large systems. In first-order term rewriting, the dependency7

pair framework can be used to split up a large termination problem into multiple (much) smaller8

components that can be solved individually. This is important because a large problem may take9

exponentially longer to solve in one go than solving each of its components.10

Unfortunately, while there are higher-order versions of several of these methods, they often fail to11

simplify a problem enough. Here, we will explore some of these techniques and their limitations, and12

discuss what else can be done to incrementally build a termination proof for higher-order systems.13

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting14

Keywords and phrases Termination, Modularity, Higher-order term rewriting, Dependency Pairs,15

Algebra Interpretations16

Digital Object Identifier 10.4230/LIPIcs.FSCD.2022.3217

Category Invited Talk18

Funding The author is supported by the NWO TOP project “ICHOR”, NWO 612.001.803/757119

and the NWO VIDI project “CHORPE”, NWO VI.Vidi.193.075.20

1 Introduction21

In the last few decades, the term rewriting community has developed a wide scala of techniques22

to prove termination of term rewriting systems. A variety of automatic termination analysis23

tools compete against each other in the annual termination competition [23], using hundreds24

of different techniques. Many of these techniques can be adapted to other forms of rewriting25

(e.g., context-sensitive, conditional), or real-world programming languages.26

Higher-order term rewriting systems in particular are very close to functional programming27

languages, and ideas developed in one are likely to extend to the other. However, realistic28

(functional) programs often have thousands of lines. Many termination techniques are ill-29

equipped for this. For example, naively finding a suitable polynomial interpretation or path30

ordering is exponential in the size of the TRS.31

Ideally, we would like to split up a large TRS into many small parts; prove termination of32

each, and conclude termination of the whole. Unfortunately, this is in general impossible, as33

termination is not modular [21]. Instead, we may look to different properties than termination.34

The dependency pair framework [12] is a de facto standard for termination proofs in first-order35

term rewriting, which combines various techniques to do exactly this: a termination problem36

is translated into one or more DP problems, which are gradually simplified, split up, and37

eventually closed, without ever having to apply an exponential technique on all rules at once.38

The DP framework has been extended to higher-order rewriting [1, 11, 16, 18]. However,39

some methods in the framework adapt poorly to higher-order rules; in particular usable rules40

– an important technique to remove large numbers of rules from a DP problem – are likely to41

fail. Hence, even with dependency pairs, we often need to find an ordering for thousands of42

rules at once. Hence, it seems important to develop incremental ways to find an ordering.43

© Cynthia Kop;
licensed under Creative Commons License CC-BY 4.0

7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022).
Editor: Amy P. Felty; Article No. 32; pp. 32:1–32:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:c.kop@cs.ru.nl
https://www.cs.ru.nl/~cynthiakop/
https://orcid.org/0000-0002-6337-2544
https://doi.org/10.4230/LIPIcs.FSCD.2022.32
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Cutting a proof into bite-sized chunks

In this paper, I will highlight how higher-order dependency pairs can be used to cut44

termination proofs into (potentially many) smaller proof obligations, and where this approach45

is weak. In addition, I will sketch a way to incrementally build a term ordering using tuple46

interpretations [17], a recently developed methodology based on algebra interpretations [10, 20]47

which was designed for complexity analysis, but also proves very powerful for termination.48

Contribution. This paper introduces usable rules with respect to an argument filtering for49

higher-order term rewriting, and lifts the arity restrictions in weakly monotonic interpretations50

[10]. However, the purpose of this paper is not to introduce new theory, but rather to explain51

how known techniques can be applied to build up a higher-order termination proof in many52

small steps. Hence, we will focus on a simple format that allows for an easy presentation.53

Related work. Aside from various definitions of dependency pairs, the most relevant related54

work is a recent approach by Hamana [13] which aims to split up a TRS into two parts: one55

which should be proved terminating when combined with some simple additional rules, the56

other ordered by a specific technique. This is discussed a bit further in Section 4.57

2 Preliminaries58

Unlike first-order term rewriting, there is no single, unified approach to higher-order term59

rewriting, but rather a number of similar but not fully compatible systems aiming to combine60

term rewriting and typed λ-calculi. Since this paper aims to explain ideas rather than provide61

technical detail, we will use a formalism that allows for a simple presentation: simply-typed62

λ-calculus with base-type rules and plain matching. The ideas extend to other forms of63

higher-order rewriting, but most definitions (e.g., dependency pairs) need more cases there.64

Given a set S of sorts, the set ST of simple types is given by: (a) S ⊆ ST and (b) if σ, τ ∈ ST65

then σ ⇒ τ ∈ ST. Types are denoted σ, τ, ρ and sorts ι, κ. We let ⇒ be right-associative.66

Hence, all types have a unique representation in the form σ1 ⇒ . . .⇒ σm ⇒ ι.67

We assume given disjoint sets F of typed function symbols, notation (f :: σ) ∈ F , and V68

of typed variables, notation (x :: σ) ∈ V; there should be countably many variables of each69

type. Terms are expressions s where s :: σ can be inductively derived for some σ by: (a)70

a :: σ if (a :: σ) ∈ F ∪ V; (b) s t :: τ if s :: σ ⇒ τ and t :: σ; (c) λx.s :: σ ⇒ τ if (x :: σ) ∈ V71

and s :: τ . The λ binds variables as in the λ-calculus; unbound variables are called free and72

FV(s) is the set of variables occurring unbound in s. A term s is called closed if FV(s) = ∅.73

Term equality is modulo α-conversion. Application is left-associative. A term s has type σ if74

s :: σ; it has base type if σ ∈ S. The head symbol of a term f s1 · · · sn is f.75

A term s has a maximally applied subterm t, notation sD t, if either s = t, or sB t, where76

sB t if (a) s = a s1 · · · sn with a ∈ F ∪ V and some si D t; or (b) s = (λx.u) s1 · · · sn (with77

n ≥ 0) and some si D t or u D t. Note that not s t D s. A pattern is a term s such that78

whenever sD t s1 · · · sn with n > 0 then t is not an abstraction or an element of FV(s).79

A substitution is a type-preserving mapping from variables to terms. The domain of a80

substitution γ is the set {x ∈ V | γ(x) 6= x}. Substitution does not capture bound variables;81

we let: (a) xγ = γ(x); (b) fγ = f; (c) (s t)γ = (sγ) (tγ) and (d) (λx.s)γ = λx.(sγ) if82

γ(x) = x and there is no y such that x ∈ FV(γ(y)); this is always defined by α-conversion.83

A relation → on terms is monotonic if s → t implies λx.s → λx.t and u s → u t and84

s u→ t u. The relation→β is the smallest monotonic relation such that (λx.s) t→β s[x := t],85

where [x := t] is the substitution mapping x to t. A rewrite rule is a pair `→ r of a pattern86

` of the form f `1 · · · `k and a term r such that FV(r) ⊆ FV(`), ` and r have the same base87

type, and r has no subterms of the form (λx.s) t1 · · · tn with n > 0. Given a set of rules88

C. Kop 32:3

R, the relation →R is the smallest monotonic relation on terms such that `γ →R rγ for all89

`→ r ∈ R and substitutions γ, and →R includes →β . A term s is in normal form if there is90

no t such that s→R t, and it is β-normal if there is no t such that s→β t. It is terminating91

if there is no infinite reduction s→R s1 →R s2 →R We say that →R is terminating if92

all terms over F ,V are terminating. The set D ⊆ F of defined symbols consists of those f93

such that R contains a rule f `1 · · · `k → r; all other symbols are called constructors.94

I Remark 1. Note that the limitation that rules have base type is not standard in the95

higher-order literature. We use it here to support a simpler presentation of definitions.96

I Example 2. As a running example, we will use a system over sorts nat (natural numbers),97

bool (booleans) and list (lists of numbers). Let 0 :: nat, s :: nat ⇒ nat, > :: bool, ⊥ ::98

bool, nil :: list, cons :: nat⇒ list⇒ list; the types of other symbols can be deduced.99

map F nil → nil map F (cons x a) → cons (F x) (map F a)
fold F x nil → x fold F x (cons y a) → fold F (F x y) a

min x 0 → x min (s x) (s y) → min x y
quot 0 (s y) → 0 quot (s x) (s y) → s (quot (min x y) (s y))

ack 0 y → s y ack (s x) 0 → ack x (s 0)
inc 0 → s (inc (s 0)) ack (s x) (s y) → ack x (ack (s x) y)

exp 0 y → y exp (s x) y → double x y 0
double x 0 z → exp x z double x (s y) z → double x y (s (s z))

mkbig a x → map (ack x) a mkdiv a x → map (λy.quot y x) a
sma b F 0 → 0 sma > F (s x) → s x

sma ⊥ F (s x) → sma (F x) F (quot x (s (s 0)))

100

In examples in this paper, we let Rf denote the subset of these rules with only the rules101

defining f. For example, Rmap refers to the top two rules, and Rack has three rules.102

Accessibility. Given a quasi-ordering �S on S whose strict part �S:= �S \ �S is well-103

founded, we define, for sort ι and type σ ≡ σ1 ⇒ . . . ⇒ σm ⇒ κ, two relations: ι �S
+ σ104

if ι �S κ and ι �S
− σi for all i, and ι �S

− σ if ι �S κ and ι �S
+ σi for all i. (Here, ι �S

+ σ105

corresponds to “ι occurs only positively in σ” in [3, 4, 6].) For f :: σ1 ⇒ . . .⇒ σm ⇒ ι, let106

Acc(f) = {i ∈ {1, . . . ,m} | ι �S σi} For terms s, t, denote sDacc t if (a) s = t, (b) s = λx.s′107

and s′ Dacc t, or (c) s = f s1 · · · sn and si Dacc t for some i ∈ Acc(f).108

For a fixed quasi-ordering �S on sorts, a term s :: ι is computable iff (1) s is terminating,109

and (2) if s →∗R f s1 · · · sm then si is computable for all i ∈ Acc(f). A term s :: σ ⇒ τ is110

computable iff s t is computable for all computable terms t :: σ. Although this is not an111

inductive definition, computability is a definable property (see, e.g., [11]).112

I Example 3. For f :: (nat⇒ nat)⇒ nat, we have Acc(f) = ∅ for any �S. If ord �S nat and113

g :: (nat⇒ ord)⇒ ord, then we do have Acc(g) = {1}. Hence, f F 6 DaccF but g F Dacc F .114

Functions and orderings. A well-founded set is a tuple (A,>,≥) such that > is a well-115

founded ordering on A; ≥ is a quasi-ordering on A; x > y implies x ≥ y; and x > y ≥ z116

implies x > z. Hence, it is not required that ≥ is the reflexive closure of >. If (A1, >1≥1),117

. . . , (An, >n≥n) are all well-founded sets, then so is (A1 × · · · ×An, >×,≥×), where ~a ≥× ~b118

if each ai ≥i bi, and ~a >× ~b if in addition ai >i bi for some i (writing ~a := 〈a1, . . . , an〉).119

Let (A,>,≥) and (B,�,�) be well-founded sets. A =⇒ B is the set of functions from A120

to B. Function equality is extensional: for f, g ∈ A =⇒ B we say f = g iff f(x) = g(x) for121

all x ∈ A. Elements of A =⇒ B are compared pointwise: f A g if f(x) � g(x) for all x ∈ A;122

and f w g if f(x) � g(x) for all x ∈ A. We say that f ∈ A =⇒ B is weakly monotonic if123

x ≥ y implies f(x) � g(y). It is strongly monotonic if in addition x > y implies f(x) � g(y).124

FSCD 2022

32:4 Cutting a proof into bite-sized chunks

3 Dependency pairs125

The traditional way to prove termination of a TRS is to embed the rewrite relation in a126

well-founded ordering. This is typically done by defining a monotonic, stable ordering (stable:127

if s � t then sγ � tγ for all substitutions γ), and then showing that ` � r for all rules `→ r.128

I Example 4. One ordering method is to map each base-type term s to a natural number129

JsK, and let s � t if JsK > JtK. For example, for some of the symbols in Ex. 2, we may define:130

JnilK = 0 Jmap F LK = (JLK + 1) ∗ (JF K(JLK) + 1)
Jcons H T K = JHK + JT K + 1131

Here, a term F :: nat⇒ nat is mapped to a strongly monotonic function in N⇒ N. We can132

prove that J`K > JrK holds for the two rules in Rmap. Since the interpretation functions are133

strongly monotonic, and the method is stable by its nature, this shows termination of Rmap.134

Unfortunately, to prove termination in this way we must find an interpretation that orders135

all rules at the same time. In a system with thousands of rules, this may well be infeasible.136

We can do a bit better with rule removal: if R = R1 ∪R2 and we have a (monotonic, stable)137

well-founded ordering � and a compatible (monotonic, stable) quasi-ordering � on terms,138

and if ` � r for ` → r ∈ R1 and ` � r for ` → r ∈ R2, then →R terminates if and only if139

→R2 does. Hence, having a termination proof for →R2 makes the termination proof for →R140

easier. However, we still have to orient all rules in R at once, and ` � r is often not that141

much easier to show than ` � r, partially due to the monotonicity requirement on �.142

I Example 5. Commonly used orderings like the recursive path ordering and interpretations143

to N cannot handle the quot rules from Example 2, as the monotonicity requirement on �144

essentially causes the property that, for any choice of ordering/interpretation, min x y � y;145

and therefore quot (s x) (s (s x)) � s (quot (s x) (s (s x))), contradicting well-foundedness.146

The dependency pair framework addresses both these issues. There are multiple higher-147

order definitions of dependency pairs, with distinct advantages and downsides; here, we148

present a form of static dependency pairs, both for its ease in presentation and because the149

static approach allows for more modular proofs than the alternative, dynamic style. To use150

static dependency pairs, we limit interest to accessible function passing (AFP) rules.151

I Definition 6. A set of rules R is accessible function passing if there exists a sort ordering152

�S such that: for all f `1 · · · `k → r ∈ R and all x ∈ FV(r), there exists i with `i Dacc x.153

This requirement means that higher-order variables are used in an essentially harmless way.154

An example of a non-AFP rule is the encoding of the untyped λ-calculus: app (lam F) X →155

F X, with lam :: (o ⇒ o) ⇒ o and app :: o ⇒ o ⇒ o, where a higher-order variable is156

lifted out of a base-type term. There are also terminating systems which are not AFP.157

However, practical examples typically satisfy this requirement. For example, the rule158

lapply x (fcons F a)→ F (lapply x a) with fcons :: (nat⇒ nat)⇒ flist⇒ flist also lifts159

a higher-order variable out of a base-type term, but is AFP if we choose flist �S nat.160

In this paper, we will mostly consider rules f `1 · · · `k → r where all higher-order variables161

occur as a direct argument of the left-hand side (i.e., as one of the `i); this is the case for all162

rules in our running example. Such rules are AFP by letting �S equate all sorts.163

I Definition 7. For each defined symbol f :: σ1 ⇒ . . . ⇒ σm ⇒ ι, we introduce a fresh164

symbol f] :: σ1 ⇒ . . . ⇒ σm ⇒ dp. The set of static dependency pairs of R is given by:165

SDP(R) = {f] `1 · · · `k V g] r1 · · · rn xn+1 · · ·xm | f `1 · · · `k → r ∈ R ∧ r D g r1 · · · rn ∧ g ∈166

D ∧ g r1 · · · rn :: σn+1 ⇒ . . .⇒ σm ⇒ ι ∧ xn+1 ∈ Vσ1 , . . . , xm ∈ Vσm are fresh variables}.167

C. Kop 32:5

The set of static dependency pairs is obtained by taking, for each rule `→ r, all maximally168

applied subterms p of r headed by a defined symbol, if necessary applying p to fresh variables169

to obtain a base-type term, and marking the head symbols of both ` and p to indicate their170

special role. In the first order setting, dependency pairs trace function calls. In the (static)171

higher-order setting, they also trace potential calls: a call of function type might end up172

being applied to almost anything, which is represented by the fresh variables.173

I Example 8. Our running example has the following dependency pairs:174

a. inc] 0 V inc] (s 0) j. map] F (cons x a) V map] F a

b. exp] (s x) y V double] x y 0 k. fold] F x (cons y a) V fold] F (F x y) a
c. min] (s x) (s y) V min] x y l. quot] (s x) (s y) V quot] (min x y) (s y)
d. ack] (s x) 0 V ack] x (s 0) m. quot] (s x) (s y) V min] x y

e. ack] (s x) (s y) V ack] (s x) y n. ack] (s x) (s y) V ack] x (ack (s x) y)
f. double] x 0 z V exp] x z o. double] x (s y) z V double] x y (s (s z))
g. mkbig] a x V ack] x y p. mkbig] a x V map] (ack x) a
h. mkdiv] a x V quot] y x q. mkdiv] a x V map] (λy.quot y x) a
i. sma] ⊥ F (s x) V r. sma] ⊥ F (s x) V

quot] x (s (s 0)) sma] (F x) F (quot x (s (s 0)))

175

Note that DP (g), which came from the rule mkbig a x→ map (ack x) a, has a fresh variable176

y in the right-hand side which does not occur on the left; this was used to flatten the subterm177

ack x to base type. (h) also has a variable y which occurs on the right but not the left; this178

is because the bound variable in map (λy.quot y x) a is freed in the subterm.179

Dependency pairs are used by translating non-termination to absence of infinite chains:180

I Definition 9. For P a set of dependency pairs, and R a set of rules, a (P,R)-chain is an181

infinite sequence [(`i V ri, γi) | i ∈ N] such that for all i: `i V ri ∈ P, and riγi →∗R `i+1γi+1.182

A (P,R)-chain is computable if each riγi is computable with respect to →R.183

Essentially, a (P,R)-chain represents an infinite reduction s1 →P t1 →∗R s2 →P t2 →∗R184

s3 . . .→P , where each si = `iγi and ti = riγi, and the steps using →P are at the root of si.185

Although chains can have various properties (e.g., being minimal, computable, formative),186

we here only consider computability, and only implicitly: this property – which implies that187

each riγi is terminating, and that the immediate arguments of each `iγi are computable – is188

used in the (omitted) correctness proofs of Section 4. We have the following result:189

I Lemma 10. Let R be a set of accessible function passing rules (for a fixed sort ordering with190

dp maximal in �S). If →R is non-terminating, then there is a computable (SDP(R),R)-chain.191

Hence, if we can prove that there is no such chain, we know the system terminates. One192

way of doing this is by using a well-founded ordering as before. Since the steps si →P ti193

occur at the root of a term, it is not needed for � to be monotonic. Rather, it suffices to194

use a reduction pair : a pair (�,�) that that � is a well-founded ordering, � is a quasi-195

ordering, � · �⊆�, both relations are stable, � is monotonic, and →β⊆�. We can again196

use interpretations to define a reduction pair. This is formally defined as follows:197

I Definition 11. We assume given, for all sorts ι, a well-founded set (Aι,Aι,wι). This198

definition is extended to all simple types as follows: Aσ⇒τ = {f ∈ Aσ =⇒ Aτ | f is weakly199

monotonic}; we let Aσ⇒τ and wσ⇒τ denote the pointwise comparisons on these functions.200

For every (f :: σ) ∈ F , we assume given Jf ∈ Aσ. For a closed term s let JsK = JsK∅,201

where, for α a function mapping each (x :: σ) ∈ V ∩ FV(s) to an element of Aσ, we define:202

JfKα = Jf JxKα = α(x)
Jt uKα = JtKα(JuKα) Jλx.tKα = d 7→ JtKα[x:=d]

203

FSCD 2022

32:6 Cutting a proof into bite-sized chunks

Here, α[x := d] maps x to d and all other variables y to α(y), and d 7→ JtKα[x:=d] is the204

function that maps d ∈ Aσ, to JtKα[x:=d]. If s :: σ, this definition yields an element JsKα of205

Aσ. We will often omit the type denotations from w when they are clear from context or206

irrelevant. We will also usually omit α and instead use for instance Jf xK = JxK + 1 instead207

of Jf(x)Kα = α(x) + 1. We typically choose J·K to represent a kind of size measure on terms.208

I Example 12. Let Alist = N, ordered as usual. To prove that there is no (SDP(Rmap),Rmap)-209

chain, it suffices to find an interpretation function J with:210

Jmap F nilK ≥ JnilK Jmap F (cons H T)K ≥ Jcons (F H) (map F T)K
Jmap] F (cons H T)K > Jmap] F T K

211

This is easily accomplished by choosing Jnil = 0, Jcons(x, y) = y + 1, Jmap(F, y) =212

Jmap](F, y) = y; that is, we map a term of list type to the length of the list. Then the213

above inequalities evaluate to: 0 ≥ 0, T + 1 ≥ T + 1 and T + 1 > T .214

Note that there is no obligation to choose Aι = N for all sorts. For more complex systems215

than map, it may also be useful to for instance map sorts to the rational numbers, or to sets216

of terminating terms. In Section 5, we will map sorts to tuples of (natural) numbers.217

As we have seen, dependency pairs and weakly monotonic interpretations together provide218

a method to prove termination. However, in contrast to the DP approach in first-order219

term rewriting, this is not a complete method: there are terminating systems which admit a220

computable chain (for example, R = {f a→ g f}, which has a dependency pair f a V f X).221

Hence, the method in general cannot be used for non-termination, and also has important222

limitations in its applicability for termination, even beyond the restriction to AFP rules.223

The alternative, dynamic style of dependency pairs[16], does not come with applicability224

restrictions and does offer an if-and-only-if result. There, collapsing dependency pairs, of a225

form such as map] F (cons H T) V F H, are included, and the notion of a (P,R)-chain is226

somewhat more complex to support this. Unfortunately, this style is much worse at enabling227

modular proofs. That is why this paper focuses on the static approach.228

4 Modular proofs with dependency pairs229

The dependency pair framework allows “DP problems” to be progressively modified to prove230

absence of chains with certain properties. We here present a very simple version of this231

framework, which only modifies a set P. A more elaborate framework is discussed in [11].232

We fix an AFP set R of rules. Let a set P of DPs be called chain-free if there is no233

computable (P,R)-chain. Then Lemma 10 states that →R is terminating if SDP(R) is234

chain-free. As suggested before, sets P can be simplified using a reduction pair. Formally:235

I Lemma 13. A set P is chain-free if P = P1] P2 where P2 is chain-free, and there is a236

reduction pair (�,�) such that: (a) ` � r for all ` V r ∈ P1, (b) ` � r for all ` V r ∈ P2237

and (c) ` � r for all `→ r ∈ R.238

Hence, chain-freeness of P is reduced to chain-freeness of a smaller set. Since � does not239

need to be monotonic, it is often easier to remove a dependency pair in this way than it240

would be to remove a rule in the original system using rule removal.241

I Example 14. Let R := Rquot ∪Rmin ∪ {inc 0→ inc (s 0)}. Then P := SDP(R) is the set242

{(a),(c),(l),(m)}. We choose J to have J0K = 0, Js xK = JxK+1, Jinc xK = Jinc] xK = 0 and243

Jmin x yK = Jmin] x yK = Jquot x yK = Jquot] x yK = JxK. Then J`K ≥ JrK for all `→ r ∈ R,244

C. Kop 32:7

and moreover: each of (c), (l) and (m) reduces to J`K = x + 1 > x = JrK, while for (a)245

we have: J`K = 0 = JrK. By Lemma 13, we have chain-freeness of SDP(R) (and therefore246

termination of →R) if we can prove chain-freeness of {inc] 0 V inc] (s 0)}. We avoid the247

problem noted in Example 5 because we only needed a weakly monotonic ordering.248

While this is an improvement over using interpretations directly, it does nothing towards249

our goal: like with rule removal, in the first step we have to orient all the rules and250

dependency pairs in one go. Even though this is easier than before because � does not need251

to be monotonic, it is still likely to be infeasible to handle thousands of rules at once.252

So, let us consider an approach that does not need an ordering: the splitting lemma.253

I Lemma 15. Assume given disjoint sets of terms A1, . . . , An, and suppose we can write254

P = P1 ∪ · · · ∪ Pn ∪Q1 ∪ · · · ∪ Qn such that for all i ∈ {1, . . . , n} we have:255

for all `V r ∈ Pi ∪Qi, and all substitutions γ: `γ ∈ Ai;256

for all `V r ∈ Pi, all substitutions γ and all terms s with rγ →∗R s: s /∈ A1 ∪ · · · ∪Ai−1;257

for all `V r ∈ Qi, all substitutions γ and all terms s with rγ →∗R s: s /∈ A1 ∪ · · · ∪Ai.258

Then P is chain-free if and only if P1, . . . , Pn are all chain-free.259

Note that the dependency pairs in Q1 ∪ · · · ∪Qn are thrown away, while the others are260

split over potentially many smaller sets of dependency pairs that are truly interdependent.261

Essentially, this lemma is a different presentation of the DP graph processor [2, 12, 19].262

I Example 16. Let Xf denote the set {f] s1 · · · sm | (f :: σ1 ⇒ . . . ⇒ σm ⇒ ι) ∈ F ∧ s1 ::263

σ1, . . . , sm :: σm}, so the set of all base-type terms s with f] as the head symbol.264

For R the rules of Example 2, and P = SDP(R) following Example 8, we may choose:265

A1 := Xmkbig A3 := Xmap A5 := Xsma A7 := Xmin A9 := Xdouble ∪Xexp

A2 := Xmkdiv A4 := Xfold A6 := Xquot A8 := Xack A10 := {inc] 0}266

267

P1 := ∅ P3 := {(j)} P5 := {(r)} P7 := {(c)} P9 := {(b), (f), (o)}
Q1 := {(g), (p)} Q3 := ∅ Q5 := {(i)} Q7 := ∅ Q9 := ∅
P2 := ∅ P4 := {(k)} P6 := {(l)} P8 := {(d), (e), (n)} P10 := ∅
Q2 := {(h), (q)} Q4 := ∅ Q6 := {(m)} Q8 := ∅ Q10 := {(a)}

268

Here, we use the property that symbols f] do not occur in R, so if the right-hand of a269

dependency pair has the form f] ~r, then the same holds for each term that (f] ~r)γ reduces270

to. Hence, essentially, we have an ordering on the function symbols, and let Pi be the set271

of dependency pairs where both sides have a function symbol of the same weight, and Qi272

those where the right-hand side has a smaller weight than the left. In A10 we also consider273

the shape of the argument: since inc] (s 0) does not reduce and is not in A10, Lemma 15274

allows us to discard (a). We can also discard (g), (p), (h), (q), (i) and (m), and reduce275

chain-freeness of (SDP(R),R) to chain-freeness of each of P3, P4, P5, P6, P7, P8 and P9.276

Yet, this still does not really accomplish our goal: while Lemma 15 allows us to split277

a large set into potentially many small ones, a small set of DPs is not necessarily easy to278

handle. In particular, to use Lemma 13, we still need to orient all rules in R at once.279

Fortunately, in many cases we can avoid an ordering altogether using the subterm criterion:280

I Lemma 17. Given a set of dependency pairs P, and a function π that maps each marked281

symbol f] :: σ1 ⇒ . . . ⇒ σm ⇒ dp that occurs in P to an integer between 1 and m, let282

π(f] s1 · · · sm) := sπ(f]). Suppose P = P= ∪ PB, where π(`) = π(r) for all `V r ∈ P= and283

π(`) B π(r) for all `V r ∈ PB. Then P is chain-free if and only if P= is chain-free.284

FSCD 2022

32:8 Cutting a proof into bite-sized chunks

The subterm criterion allows us to discard many dependency pairs without even consider-285

ing R. This is possible because the “chain-free’ notion considers computable chains, so in a286

(P,R)-chain, each π(`)γ and π(r)γ can be assumed to be terminating.287

I Example 18. Chain-freeness of {(j)} follows by π(map]) = 2, since π(map] F (cons x a)) =288

cons x aB a = π(map] F a); we have P= = ∅ and PB = {(j)}, and ∅ is obviously chain-free.289

In the same way, {(k)} and {(c)} are discarded (choosing π(fold]) = 3 for the first, and290

π(min]) = 1 for the second). For the set {(d), (e), (n)}, we let π(ack]) = 1, and obtain291

chain-freeness if {(e)} is chain-free, which holds by a second application of the subterm292

criterion, now with π(ack]) = 2. For {(b), (f), (o)}, we let π(exp]) = π(double]) = 1, which293

allows us to discard (b) because s xBx; chain-freeness of the remaining set {(f), (o)} follows294

from chain-freeness of {(o)} by the splitting lemma (choosing A1 = Xdouble and A2 = Xexp
295

as in Example 16), which follows by the subterm criterion with π(double]) = 2.296

Hence, following Example 16, Example 2 is terminating if {(l)} and {(r)} are chain-free.297

The formulation and use of the subterm criterion is exactly as in the first-order case.298

There is a also variation of this criterion with a higher-order focus[11, Theorem 63]:299

I Lemma 19. Let s A t if sBacc t or t = F t1 · · · tn and sBacc F with F ∈ V. P= ∪ PB is300

chain-free if PB is chain-free, π(`) = π(r) for `V r ∈ P= and π(`) A π(r) for `V r ∈ PB.301

So, the B relation in Lemma 17 is replaced by a relation that considers the type ordering302

and accessibility relation. This is designed particularly to handle rules like ordinal recursion:303

rec (lim F) U X W → W F (λn.rec (F n) U X W), which has a dependency pair304

rec] (lim F) U X W V rec] (F n) U X W with lim :: (nat⇒ ord)⇒ ord.305

The subterm criterion (whether in its basic form or the variation of Lemma 19) is a306

powerful technique that – in combination with the splitting lemma (Lemma 15) – might307

allow us to complete a termination proof in a very modular way. Yet, if any DP problems308

remain which cannot be further split by either lemma, we will still have to orient all the rules.309

To deal with this issue, we again follow the first-order DP framework and apply usable rules.310

I Definition 20 (Usable Rules). For Q a set of rules or dependency pairs, let rhs(Q) denote311

the set of terms occurring as the right-hand side of some rule/DP in Q. For a set T of terms,312

let Use(T,R) denote the set of those rules f `1 · · · `k → r in R such that:313

1. there is a term s ∈ T which has a (fully applied) subterm of the form f s1 · · · sk, or314

2. there is a term s ∈ T which has a subterm x t1 · · · tm with x ∈ FV(s) and m > 0.315

For a set of DPs P, we let its set UR(P,R) of usable rules be defined as the smallest set316

U ⊆ R such that Use(rhs(P),R) ⊆ U and Use(rhs(U),R) ⊆ U .317

Intuitively, a rule is considered usable if we may need it to rewrite relevant instances of318

some right-hand side of P. For example, when rewriting a term f (quot s t), we will likely319

need the quot rules, and their use introduces occurrences of min, which may also be relevant.320

However, the fold rules will only be used if fold already occurs in s or t.321

I Example 21. For our running example, UR({(l) quot] (s x) (s y) V quot] (min x y) (s y)},322

R) = Rmin, since the only defined symbol occurring in the right-hand side is min, and the right-323

hand side of the two min rules contain no other defined symbols. Note that quot] is marked,324

and does not occur in R, so the quot rules are not included. UR({(r) sma] ⊥ F (s x) V325

sma] (F x) F (quot x (s (s 0)))},R) = R due to the subterm F x of the right-hand side.326

Usable rules are best used in combination with a weakly monotonic ordering. In the327

following, let Cε be a set {pairι x y → x, pairι x y → y | ι ∈ S} for fresh symbols pairι.328

C. Kop 32:9

I Lemma 22. Suppose R is finitely branching. Then a set P is chain-free if P = P1] P2329

where P2 is chain-free, and there is a reduction pair (�,�) such that: (a) ` � r for all330

`V r ∈ P1, (b) ` � r for all `V r ∈ P2 and (c) ` � r for all `→ r ∈ UR(P,R) ∪ Cε.331

(“Finitely branching” means that for any s there are only finitely many t with s→R t;332

this holds for instance if R is finite.)333

The difference between Lemma 22 and Lemma 13 is that instead of orienting all rules,334

we only have to orient the usable rules, plus some rules of the form pairι x1 x2 → xi. The335

latter is trivial for most commonly used orderings. The need for these additional rules is also336

present in the first-order case, and can be dropped when considering innermost termination.337

I Example 23. To prove chain-freeness of {(l) quot] (s x) (s y) V quot] (min x y) (s y)},338

whose DPs are Rmin following Example 21, we need quot] (s x) (s y) � quot] (min x y) (s y)339

and min (s x) (s y) � min x y and min x 0 � x, as well as pairι � ι for all ι. To achieve340

this, we use the same interpretation as in Example 14, and let Jpairι = max(x, y) for all ι.341

We have now nearly completed our running example, with only one singular set remaining.342

To address this last dependency pair, we observe that the use of the function symbol in the343

sma rules is innocuous: the size of sma b F x is bounded by the size of x no matter what kinds344

of calls the evaluation of F may bring up. It would be nice to ignore the dependency pairs345

imposed by this relatively harmless function application. To do this, we build on first-order346

methods once more, and combine usable rules with an argument filtering.347

I Definition 24 (Argument filtering). Let a function ν be given which maps each (marked348

or unmarked) function symbol f :: σ1 ⇒ . . . ⇒ σm ⇒ ι to a subset of {1, . . . ,m}. If349

ν(f) = {i1, . . . , ik} with i1 < · · · < ik, then let ψν(f s1 · · · sm) denote f′ si1 · · · sik , where350

f′ :: σi1 ⇒ . . .⇒ σik ⇒ ι is a new function symbol. We define:351

ν(f t1 · · · tn) = λxn+1 . . . xm.ψν(f ν(t1) · · · ν(tn) xn+1 · · ·xm) if f takes m args
ν(x t1 · · · tn) = x ν(t1) · · · ν(tn)

ν((λx.u) t1 · · · tn) = (λx.ν(u)) ν(t1) · · · ν(tn)
352

For a set of rules R, let ν(R) = {ν(`)→ ν(r) | `→ r ∈ R}, and similar for a set of DPs.353

Essentially, we make sure that all function symbols are maximally applied (by replacing354

a partially applied function f s1 · · · sn by λxn+1 . . . xm.f s1 · · · sn xn+1 · · ·xm), and then355

remove the arguments that we do not want to consider from their function symbols.356

I Lemma 25. Suppose R is finitely branching. Then a set P is chain-free if P = P1]P2 where357

P2 is chain-free, and there is a reduction pair (�,�) such that: (a) ` � r for all `V r ∈ ν(P1),358

(b) ` � r for all `V r ∈ ν(P2) and (c) ` � r for all `→ r ∈ UR(ν(P), ν(R)) ∪ Cε.359

With this method, we can finally complete our running example.360

I Example 26. We let ν(sma]) = {2, 3} and ν(f) = {1, . . . ,m} for all other symbols361

f :: σ1 ⇒ . . . ⇒ σm ⇒ ι. Then ν({(r)}) = {sma] F (s x) V sma] F (quot x (s (s 0)))}.362

Hence, UR(ν({(r)}), ν(R)) = UR(ν({(r)}),R) = Rquot ∪Rmin.363

We use the same interpretation for quot and min as in Example 14, and let Jsma] F xK =364

JxK. Then J`K ≥ JrK is satisfied for the usable rules as before, and Jsma] F (s x)K = JxK + 1 >365

JxK = Jsma] F (quot x (s (s 0)))K orients the DP. Hence, our last remaining set P is366

chain-free, and the original system is terminating.367

In the context of step-wise simplifying a termination problem, formative rules are also368

worth mentioning. These are defined much like usable rules, but from the left side of rules369

and DPs rather than the right: Form(T,R) contains those `→ r ∈ R such that:370

FSCD 2022

32:10 Cutting a proof into bite-sized chunks

1. r = f r1 · · · rm and there is a term s ∈ T with sD f s1 · · · sm for some s1, . . . , sm, or371

2. r = x r1 · · · rm and there is a term s ∈ T with sD t for some t whose type is the same as372

the type of r, and t is not a free variable in s, or373

3. there is a term s ∈ T which is not linear, or has a subterm λx.t with FV(t) ∩ FV(s) 6= ∅.374

The set FR(P,R) of formative rules is the smallest set O ⊆ R such that Form(lhs(P),R) ⊆ O375

and Form(lhs(O),R) ⊆ O. Hence, the parallels with usable rules are obvious.376

In a more elaborate DP framework, which carries pairs (P,R) instead of just sets P and377

considers more properties for chains than just computability, this definition can be used378

to remove elements of R [11, Theorem 58]. In the current, limited DP framework, we can379

still use formative rules with reduction pairs, for instance by changing requirement (c) in380

Lemma 25 to: ` � r for all ` → r ∈ UR(ν(P), ν(FR(P,R))) ∪ Cε. It seems likely that we381

can also combine formative rules with an argument filtering, and hence limit interest to382

`→ r ∈ UR(ν(P),FR(ν(P), ν(R)))∪Cε. However, this proof currently only exists as a sketch.383

Unfortunately, although we can use this method to eliminate some rules, these rules are384

usually simple; for example, we may throw out the base case of a rule times 0 y → 0 but385

not the more complex induction case times (s x) y → add (s x) (times x y). The primary386

use case is when the set of sorts can be split, say S = A ∪B, so that the rules of type A do387

not use any symbols over type B; in this case, we may be able to remove all rules of type B.388

However, this does not happen often in practice. Hence, this is not really a core technique.389

Discussion. The techniques in this section are all direct adaptations of methods for first-390

order term rewriting, and they are used in a similar way as their first-order counterpart. Yet,391

there is a clear place for higher-order reasoning, too. Type analysis play a role in both the392

AFP restriction and the alternative subterm criterion. In the splitting lemma, higher-order393

reachability analysis can be used to assess whether any reducts of rγ are in some Ai. The394

choice of a reduction pair needs to take functional variables and β-reduction into account.395

A critical difference between first-order and higher-order analysis lies in usable rules: case396

2 in Definition 20 is not present in the first-order definition, since there variables cannot be397

applied. But in higher-order rewriting, if any element of P, or any of its usable rules, has398

a subterm x s0 · · · sn, then all rules are usable. Since a variable of higher type is typically399

applied eventually (otherwise, why carry it around?), this essentially means that if any rule400

with a higher-order variable is usable, then all rules are, and Lemma 22 is no improvement401

over Lemma 13. Effectively: we can only use usable rules in an essentially first-order problem!402

Hence, instead of usable rules, Example 23 could have been done using [9], which shows403

that if the “first-order” part of a higher-order system combined with Cε is terminating,404

then the corresponding DPs may be dropped from SDP(R). We recover this result with405

Lemmas 15 and 22: define FO as the largest subset of R such that (a) the rules in FO do406

not use abstractions, variables of higher type or partially applied function symbols, and (b)407

Use(rhs(FO),R) ⊆ FO. Let A2 = {f] s1 · · · sn | f is the head symbol of the left-hand side of408

a rule in FO}, and let A1 = {f] s1 · · · sm | f is a different defined symbol}; by Lemma 15,409

termination follows if SDP(R \ FO) and SDP(FO) are both chain-free. As the usable rules of410

SDP(FO) are in FO, we can apply Lemma 22 with � the (terminating!) relation (→FO∪Cε ∪B)+
411

on terms with] marks removed. Hence, it suffices to prove chain-freeness of SDP(R \ FO).412

A similar result appears in [13], but instead of just first-order rules, this paper considers413

a set A ⊆ R where both the left- and right-hand sides of rules are patterns. This obviously414

captures first-order rules, but – due to the more permissive formalism of rewriting used in [13]415

– also some forms of higher-order rules with particular applications (algebraic effect handlers).416

To handle R \A, the author of [13] does not use dependency pairs but rather a version of417

the general schema [4]. There are many similarities between this technique and dependency418

C. Kop 32:11

pairs with the splitting lemma and extended subterm criterion, but the restrictions to apply419

the general schema do not need to apply to A. A parallel result in our setting would be that420

the rules of A would not need to be accessible function passing, yet termination still holds if421

SDP(R \A) is chain-free. It might be worth investigating if this is the case.422

These positive results aside, without an argument filtering, usable rules does not give423

us much else due to the requirement that any variable application makes all rules usable.424

Unfortunately, this requirement is hard to avoid. Consider for instance the rules Rcomp2:425

comp2 0 (s y) → ⊥ comp2 x 0 → >
comp2 (s 0) (s y) → ⊥ comp2 (s (s x)) (s y) → comp2 x y

f F x ⊥ → end x f F x > → f F (s x) (comp2 (F x) x)
426

Now, →Rcomp2∪Cε is terminating, since comp2 n m determines whether n ≥ 2 ∗m, and the only427

closed functions from nat to nat are built using λ, 0, s and pairnat. Hence, in the worst case428

F is linear in its argument, so for large enough x, comp2 (F x) x will return ⊥. However,429

combining these rules with double 0→ 0, double (s x)→ s (s (double x)) clearly yields a430

non-terminating system. Here it is essential that the double rules are considered usable.431

All this means that, if we succeed in applying usable rules – with or without an argument432

filtering – the corresponding ordering requirements will be essentially first-order (perhaps433

with some abstractions or unused higher-order variables). When these methods do not apply,434

there is no obvious way to circumvent the need to orient all rules at once. The same happens435

when we use dynamic instead of static DPs, where collapsing pairs often cause the subterm436

criterion, splitting lemma and usable rules to fail; the static approach is incomplete, so we437

may need the dynamic approach even on some AFP systems. In the next section we will see438

how we can also use a modular kind of reasoning to build a suitable reduction pair.439

5 Incrementally building weakly monotonic interpretations440

Although higher-order variations of the recursive path ordering [14, 5] have been very succesful441

in orienting higher-order rules, the current paper instead focuses on interpretations. The442

reason for this is twofold. First, the static dependency pair approach already captures many443

of the same advantages as higher-order RPO, since both methods are based on the same444

proof technique (computability). The second, and main, reason is that, unlike RPO, an445

interpretation-based ordering for a large set of rules can usually be built step by step.446

Weakly monotonic interpretations do not provide a complete proof method: there are447

terminating systems that cannot be ordered with interpretations. Nevertheless, it has the448

potential to be very powerful – if we choose the sets Aι right. In the examples so far, we449

have let Aι = N for all sorts, but this is fundamentally limiting. For example, if other rules450

impose that Js xK > JxK, we cannot orient inc 0 → s (inc (s 0)). Instead, following an451

approach for complexity in [17], we will map terms to tuples of numbers.452

Intuitively, we assign to all sorts a variety of numbers to indicate different measures of453

size. For example, a string of as and bs might be mapped to the number of as, the number454

of bs, and the total length. Then we express for each rule how it affects the size measures.455

This is a semantic technique: rather than only looking at the shape of rules, the best results456

are typically obtained by modelling our interpretation to the intended meaning of the rules.457

We left Section 4 with some techniques that often, but not always allow us to cut a458

termination proof into bite-sized chunks. In the remaning cases, we must orient a large459

number of rules and – typically – a small number of DPs using a reduction pair. To find an460

interpretation (following Definition 11) that lets us do so, we will use the following procedure:461

FSCD 2022

32:12 Cutting a proof into bite-sized chunks

1. We choose an initial set Aι for each sort, along with an intuitive meaning, and define Jf462

for all constructor symbols f according to this meaning.463

2. We divide the defined symbols into sets D1, . . . ,Dn such that for each f ∈ Di, all the464

function symbols occurring in the rules defining f are either constructors or in D1∪· · ·∪Di.465

3. For all i (starting with 1 going up to n), we find interpretations for the symbols in Di so466

that J`K w JrK; we strive to make them as tight as possible, to make later rules easier.467

4. If we find that some rule of sort ι cannot be oriented, we extend Aι with an additional468

measure that does make this possible (if we can). We return to the previous step, updating469

the interpretations we already had to take the new measure into account.470

5. When all rules are oriented, we find interpretations for the DPs in the same way.471

This approach has not been formalised or implemented; rather, the goal is to present472

ideas; to hopefully lay the foundation for an automated approach in the future.473

Let us explore how the procedure works by applying it to a large example.474

Preparation. Let R consist of the rules in Example 2 combined with the following:475

hd (cons x a) → x len nil → 0
id x → x len (cons x a) → s (len a)

twice F x → F (F x) H (s x) → H (twice id x)
476

For P = {H] (s x) V H] (twice id x)} ⊆ SDP(R), all rules are usable, the subterm criterion477

cannot be applied, and there is no argument filtering that stops all rules from being usable478

and yet allows us to strictly orient the single dependency pair. Hence, as we noted before,479

we need to find an interpretation to show J`K � JrK for a large number of rules (all rules in480

the system), and J`K � JrK for a small number of DPs (the single element of P).481

So let us begin! Following step 1, we assign an intuitive measure to each type: terms482

of type nat are mapped to the corresponding number, lists to their largest element, and483

booleans to 0 or 1: Anat = Alist = (N, >,≥), Abool = ({0, 1}, >,≥). This corresponds with:484

J0 = 0 Jnil = 0 J⊥ = 0
Js(x) = x+ 1 Jcons(x, a) = max(x, a) J> = 1485

We will handle the defined symbols in the following order: {id}, {twice}, {min}, {quot},486

{sma}, {hd}, {ack}, {map}, {mkbig}, {mkdiv}, {len}, {fold}, {inc}, {double, exp}. This487

satisfies the requirement on the order of symbols, and is otherwise arbitrary.488

The straightforward part. Following step 3, we will repeatedly interpret one or more489

defined symbols whose rules only depend on each other and symbols that already have an490

interpretation. To start, if Jid(x) = x clearly Jid xK = JxK. The rule defining id is oriented,491

and since we have an equality, this interpretation is as tight as possible. We can achieve the492

same for twice: with Jtwice(F, x) = F (F (x)) we have J`K = JrK for the corresponding rule.493

Unfortunately, we cannot achieve equality for min. Due to the monotonicity requirement,494

we cannot have Jmin(x, y) = x − y, which would give a tight interpretation. For the495

current choice of (Anat,Anat,wnat), the best we can do is Jmin(x, y) = x. With this choice,496

Jmin x 0K = JxK, and Jmin (s x) (s y)K = JxK + 1 > JxK = Jmin x yK, so the rules are oriented.497

Next is quot. Since we already know Jf for all other symbols in the two quot rules, the498

requirements are: Jquot 0 (s y)K = Jquot(0, y + 1) ≥ 0 = J0 = J0K, and Jquot (s x) (s y)K =499

Jquot(x+ 1, y + 1) ≥ Jquot(x, y + 1) + 1 = Js (quot (min x y) (s y))K. This is easily satisfied500

with Jquot(x, y) = x (which is tight, as the left- and right-hand side are equal in both rules).501

C. Kop 32:13

Similarly, the requirements for sma are: Jsma(b, F, 0) ≥ 0 and Jsma(1, F, x + 1) ≥ x + 1502

and Jsma(0, F, x+ 1) ≥ Jsma(F (x), F, x). The simplest solution is Jsma(b, F, x) = x. To orient503

hd (cons x a)→ x, we let Jhd(x) = x; this suffices because max(x, a) ≥ x, and is optimal.504

Beyond polynomials. When adressing ack, we run into some trouble: thus far, all our505

interpretation functions Jf have been bounded by polynomials, but these rules implement506

the Ackermann function which grows much faster than any polynomial. However, there is no507

need to limit interest to polynomials. Indeed, the three rules provide a recursive specification:508

ack 0 y = s y ack (s x) 0 = ack x (s 0)
ack (s x) (s y) = ack x (ack (s x) y)509

We can see by the recursive path ordering that this is terminating, and since it is a non-510

overlapping constructor system, it is confluent. Hence, we can define Ack as a function from511

N to N, and choose Jack(x, y) = Ack(x, y). Then obviously all three ack rules are oriented.512

We orient map by Jmap(F, a) = F (a): by weak monotonicity of F we have F (max(x, a)) ≥513

F (x). Intuitively, applying F to some element of the list cannot be greater than F (largest514

element). To orient the mkbig rules, we must have Jmkbig(a, x) ≥ Jmap(Jack(x), a) = Ack(x, a),515

so we choose mkbig(a, x) = Ack(x, a). For mkdiv, we let Jmkdiv(x, a) = Jquot(a, x) = a.516

Backtracking. We are in trouble again when trying to orient the len rule: the interpretation517

of the constructors imposes Jlen(0) = 0 and Jlen(max(x, a)) ≥ 1 +Jlen(a). The latter is not518

satisfiable since (for x = a) it implies Jlen(a) ≥ 1+Jlen(a). The problem lies in the choice for519

Jcons, which does not give enough information. Similarly, if we had chosen Jcons(x, a) = a+ 1520

(so mapping a list to its length), we could have oriented the len rules but not hd.521

Hence, we are at Step 4: extending the sort interpretations. We can keep Anat unchanged,522

but let us take Alist := N2, mapping a list of numbers to the pair of its greatest argument523

and its length (ordered with ≥× as described in Section 2). The constructors are mapped to:524

Jnil = 〈0, 0〉 Jcons(x, 〈m, l〉) = 〈max(x,m), l + 1〉525

This follows the intended meaning of the sort. In line with Step 4 we now need to go back526

and update all interpretations for the new target set Anat and the new interpretations for nil527

and cons. However, this turns out to be quite easy. Note that in the interpretations of the528

constructors, the original choices 0 and max(x, a)) are still present, in the first component.529

Similarly, the interpretations for the defined symbols are adapted by (a) replacing any list530

variable by its first component, and (b) adding a length component to the interpretation for531

the defined symbols of a type ~σ ⇒ list, so that J`K2 ≥ JrK2 for the relevant rules. This yields:532

Original: Update:
Jhd(a) = a Jhd(〈m, l〉) = m

Jmap(F, a) = F (a) Jmap(F, 〈m, l〉) = 〈F (m), l〉
Jmkbig(a, x) = Ack(x, a) Jmkbig(〈m, l〉, x) = 〈Ack(x,m), l〉
Jmkdiv(a, x) = a Jmkdiv(〈m, l〉, x) = 〈m, l〉

533

The interpretations for id, twice, min, quot, sma and ack are unchanged as list does not534

occur in their type. We can orient the len rules using Jlen(〈m, l〉) = l.535

Continuing our example, we orient Rfold with Jfold(F, x, 〈m, l〉) = (d 7→ F (d,m))l(x), so536

using repeated function application. To see that this works, denote JaK = 〈m, l〉. Then:537

Jfold F x (cons y a)K = (d 7→ F (d,max(y,m)))l+1(x)
= (d 7→ F (d,max(y,m)))l((d 7→ F (d,max(y,m)))(x))
= (d 7→ F (d,max(y,m)))l(F (x,max(y,m)))
≥ (d 7→ F (d,m))l(F (x, y)) by weak monotonicity of F
= Jfold F (F x y) aK

538

FSCD 2022

32:14 Cutting a proof into bite-sized chunks

Non-numeric interpretations. As observed before, we cannot orient the inc rule if539

Js xK > JxK, which is currently the case. To handle this problem, we must backtrack again,540

and update Anat. Let X = {a, b, c} with a > b and a > c. We let Anat = N×X, and set:541

J0 = 〈0, b〉 Js(〈n, e〉) = 〈n+ 1, c〉
Jnil = 〈0, 0〉 Jcons(〈n, e〉, 〈m, l〉) = 〈max(n,m), l + 1〉542

(Note that we had to adapt Jcons because it takes a nat as argument, but the interpretation543

is essentially unchanged: the new component is simply discarded.)544

With this interpretation, Js 0K = 〈1, c〉 6Anat 〈0, b〉 = J0K. Now we can orient the inc545

rule using: Jinc(x, e) = “if e = c then 0 else 1”. Then Jinc 0K = 1 = s (inc (s 0)). We546

update the existing interpretations by replacing references to a natural number x by its first547

component, and letting the second component of every defined symbol be a:548

Jid(〈n, e) = 〈n, a〉 Jtwice(F, 〈n, e〉) = F (F 〈n, e〉)
Jmin(〈n, e〉, 〈m, i〉) = 〈n, a〉 Jack(〈n, e〉) = 〈Ack(n), a〉

Jquot(〈n, e〉) = 〈n, a〉 Jmap(F, 〈m, l〉) = 〈F (〈m, a〉), l〉
Jsma(b, F, 〈n, e〉) = 〈n, a〉 Jmkbig(〈m, l〉, 〈n, e〉) = 〈Ack(n,m), l〉

Jhd(〈m, l〉) = 〈m, a〉 Jmkdiv(〈m, l〉, 〈n, e〉) = 〈m, l〉
Jlen(〈m, l〉) = 〈l, a〉 Jfold(F, 〈n, e〉, 〈m, l〉) = (d 7→ F (d, 〈m, a〉))l(〈n, e〉)

549

Mutually recursive symbols. To handle the mutually recursive symbols double and exp,550

we can either find assignments for Jexp and Jdouble at the same time, or use a trick: the551

system is essentially unchanged if we replace these rules by the following:552

exp 0 y → y exp (s x) y → double x y 0 exp
double x 0 z F → F x z double x (s y) z F → double x y (s (s z)) F553

Now double and exp are no longer mutually recursive, and can be handled separately.554

For double, we can choose Jdouble(x, 〈y, u〉, 〈z, e〉, F) := F (x, 〈z + 2 ∗ y, a〉). Using this,555

the requirements for exp evaluate to Jexp(〈0, b〉, y) wnat y and Jexp(〈x + 1, c〉, 〈y, e〉) wnat556

Jexp(〈x, u〉, 〈2 ∗ y, a〉). This is satisfied with Jexp(〈x, u〉, 〈y, e〉) = 〈2x ∗ y, a〉. Now we can find557

an interpretation for the original definition of double by replacing F by Jexp; this gives558

Jdouble(〈x, i〉, 〈y, u〉, 〈z, e〉) = 〈2x ∗ (z + 2 ∗ y), a〉.559

In this case, we only had two mutually recursive symbols, so the separation was perhaps560

unnecessary. However, to handle a large group of mutually recursive rules, this idea may be561

indispensible to split it into manageable chunks. Note also that we used the higher-order562

capabilities of interpretations, even though the exp and double rules are first-order.563

Finishing up. The last rule, H (s x) → H (twice id x), can be handled by choosing564

JH(x) = 0. Now, having J`K w JrK for all rules, we move on to step 5 of the procedure. We565

let Adp = N and orient the DP by choosing JH](〈x, e〉 = x. Then, using p1 to denote the first566

element of a pair p, we have JH (s x)K = JxK1 + 1 > JxK1 = Jid(Jid(x))1 = JH (twice id x)K567

as required. Hence, the termination proof of the extended system is complete.568

It is worth noting that there are many similarities between dependency pairs and this569

incremental procedure for interpretations. Dividing the function symbols in groups based on570

mutual dependencies also happens in the splitting lemma, and handling them in order so that571

the dependencies for a rule f ~̀→ r have been computed before Jf is reminiscent of usable rules.572

Non-numeric interpretations like {a, b, c} can take the same role as reachability analysis in573

the splitting lemma. Also, strongly monotonic tuple interpretations (used without dependency574

C. Kop 32:15

pairs) avoid the problem that f ~x � xi of Example 5, and can handle Rquot ∪ Rmin.[17].575

Hence, tuple interpretations transpose DP-like reasoning to the level of rules rather than576

dependency pairs. In future work it might be possible to define a similar reasoning approach577

as the DP framework, but based on interpretations rather than dependency pairs. This may578

offer a powerful tool for complexity analysis similar to the DP framework for termination.579

Formalisation and implementation580

The procedure above illustrates how a human can find tuple interpretations in a systematic581

way. However, to be practically usable for systems with thousands of rules, the approach582

needs to be automated – and to achieve that, there is a lot of work still to be done.583

The methods to find individual interpretations should be automated. This could be done584

using an encoding to SAT or SMT [7, 8, 10, 24], but the existing techniques will have to585

be extended to for instance support repeated function application Fn(x).586

The use of interpretations to sets like {a, b, c}, which we used as a kind of reachability587

check, should be formalised and explored more deeply. The same holds for defining588

functions like Ack based on a given terminating and confluent subset of R.589

The process to adapt existing interpretations when Aι is expanded should be formalised.590

To be precise, we would like to find a systematic way to modify an interpretation function591

J so that previously proven inequalities J`K w JrK are preserved either directly if ` :: κ 6= ι,592

or in the first component (i.e., J`K1 wι JrK1) if ` :: ι. This was straightforward in all593

examples that we have seen, but it is not easy to define an algorithm. We conjecture that594

this can be done in general, but it may require also changing Aκ for some other sorts.595

If the conjecture is false, we could alternatively do a true backtracking step, and recompute596

all interpretations. Doing this means repeatedly discarding prior work, but it has the597

advantage that, with the new information, we may be able to find tighter interpretations.598

(For example, with JnatK = N× {a, b, c}, there is a smaller choice for Jmin.)599

When splitting a group of mutually recursive symbols, the choice of which function600

symbol to give an extra argument to matters. In the example, replacing the exp rules by601

exp 0 y F → y and exp (s x) y F → F x y 0 would not have given the same good result,602

since there is no perfectly tight interpretation for these rules. Hence, we should either603

find a good heuristic to choose the symbol, or use a procedure based on trial and error.604

6 Conclusions605

In this paper, we explored a group of methods that can be combined to build termination606

proofs for many large higher-order TRSs, in an incremental way. The foundation is the static607

DP approach, with techniques lifted from the first-order setting but adapted to higher-order608

rewriting: the splitting lemma, two subterm criteria and two usable rules lemmas. As a609

reduction pair, we considered weakly monotonic interpretations to tuples, an idea originating610

in complexity analysis which avoids many limitations of interpretations to N. Most of the611

theory is not new (though it is adapted to a different formalism), but is used in a new way,612

to hopefully provide insights on the challenge of large higher-order termination problems.613

A part of the techniques discussed in this paper have been implemented in Wanda614

[15], but not yet usable rules with respect to an argument filtering, or any form of tuple615

interpretations. An obvious goal for future work is to complete this implementation, and616

to formalise and implement the ideas of Section 5. In addition, an important goal is to617

transpose the methodology (and implementation) to functional programming languages. This618

FSCD 2022

32:16 Cutting a proof into bite-sized chunks

would also allow us to investigate the power of the framework on real systems. While the619

termination problem database [22] does contain large systems, these are invariably first-order620

systems with only a few, mostly very simple, higher-order rules.621

Finally, there are many ways to improve the DP framework. This could take the form of622

lifting more ideas from the first-order setting, recognising more situations where not all rules623

need to be usable (such as the DP for the H rule), or finding a way to weaken or drop the624

AFP restriction, for instance by combining static and dynamic dependency pairs.625

References626

1 T. Aoto and Y. Yamada. Dependency pairs for simply typed term rewriting. In Proc. RTA627

’05, volume 3467 of LNCS, pages 120–134, 2005.628

2 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical629

Computer Science, 236(1-2):133–178, 2000.630

3 F. Blanqui. Termination and confluence of higher-order rewrite systems. In Proc. RTA ’00,631

volume 1833 of LNCS, pages 47–61, 2000.632

4 F. Blanqui, J. Jouannaud, and M. Okada. Inductive-data-type systems. Theoretical Computer633

Science, 272(1-2):41–68, 2002.634

5 F. Blanqui, J. Jouannaud, and A. Rubio. The computability path ordering: The end of a635

quest. In Proc. CSL ’08, volume 5213 of LNCS, pages 1–14, 2008.636

6 F. Blanqui, J. Jouannaud, and A. Rubio. The computability path ordering. Logical Methods637

in Computer Science, 11(4), 2015.638

7 C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio. SAT modulo linear639

arithmetic for solving polynomial constraints. Journal of Automated Reasoning, 48(1):107–131,640

2012.641

8 C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl. SAT642

solving for termination analysis with polynomial interpretations. In Proc. SAT ’07, volume643

4501 of LNCS, pages 340–354. Springer, 2007.644

9 C. Fuhs and C. Kop. Harnessing first order termination provers using higher order dependency645

pairs. In Proc. FroCoS ’11, volume 6989 of LNAI, pages 147–162, 2011.646

10 C. Fuhs and C. Kop. Polynomial interpretations for higher-order rewriting. In Proc. RTA ’12,647

volume 15 of LIPIcs, pages 176–192, 2012.648

11 C. Fuhs and C. Kop. A static higher-order dependency pair framework. In Proc. ESOP ’19,649

volume 11423 of LNCS, pages 752–782, 2019.650

12 J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework: Combining651

techniques for automated termination proofs. In Proc. LPAR ’04, volume 3452 of LNAI, pages652

301–331, 2005.653

13 M. Hamana. Modular termination for second-order computation rules and application to654

algebraic effect handlers. Arxiv preprint arXiv:1912.03434, 2019.655

14 J. Jouannaud and A. Rubio. The higher-order recursive path ordering. In Proc. LICS ’99,656

IEEE, pages 402–411, 1999.657

15 C. Kop. WANDA – a higher-order termination tool. In Proc. FSCD 20, volume 167 of LIPIcs,658

pages 36:1–36:19, 2020.659

16 C. Kop and F. van Raamsdonk. Dynamic dependency pairs for algebraic functional systems.660

Logical Methods in Computer Science, 8(2):10:1–10:51, 2012.661

17 C. Kop and D. Vale. Tuple interpretations for higher-order complexity. In Proc. FSCD ’21,662

volume 195 of LIPIcs, pages 31:1–31:22. Dagstuhl, 2021.663

18 K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static dependency pair method based on664

strong computability for higher-order rewrite systems. IEICE Transactions on Information665

and Systems, 92(10):2007–2015, 2009.666

C. Kop 32:17

19 K. Kusakari and M. Sakai. Enhancing dependency pair method using strong computability667

in simply-typed term rewriting. Applicable Algebra in Engineering, Communication and668

Computing, 18(5):407–431, 2007.669

20 J. van de Pol. Termination proofs for higher-order rewrite systems. In Proc. HOA 94, volume670

816 of LNCS, pages 305–325, 1994.671

21 Y. Toyama. Counterexamples to termination for the direct sum of term rewriting systems.672

Information Processing Letters, 25(3):141–143, 1987.673

22 Wiki. Termination Problems DataBase (TPDB). http://termination-portal.org/wiki/674

TPDB.675

23 Wiki. The International Termination Competition (TermComp). http://676

termination-portal.org/wiki/Termination_Competition, 2018.677

24 A. Yamada. Multi-dimensional interpretations for termination of term rewriting. In Proc.678

CADE 21, volume 12699 of LNAI, pages 273–290, 2021.679

FSCD 2022

http://termination-portal.org/wiki/TPDB
http://termination-portal.org/wiki/TPDB
http://termination-portal.org/wiki/TPDB
http://termination-portal.org/wiki/Termination_Competition
http://termination-portal.org/wiki/Termination_Competition
http://termination-portal.org/wiki/Termination_Competition

	1 Introduction
	2 Preliminaries
	3 Dependency pairs
	4 Modular proofs with dependency pairs
	5 Incrementally building weakly monotonic interpretations
	6 Conclusions

