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Abstract
Higher-order rewriting is a framework in which higher-order programs can be described by trans-
formation rules on expressions. A computation occurs by transforming an expression into another
using such rules. This step-by-step computation model induced by rewriting naturally gives rise
to a notion of complexity as the number of steps needed to reduce expressions to a normal form,
i.e., an expression that cannot be reduced further. The study of complexity analysis focuses on
the development of automatable techniques to provide bounds to this number. In this paper, we
consider a form of higher-order rewriting with a call-by-value evaluation strategy, so as to model
call-by-value programs. We provide a cost–size semantics: a class of algebraic interpretations to
map terms to tuples which bound both the reduction cost and the size of normal forms.
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1 Introduction

Term rewriting is a logical framework that, among other applications, provides a computa-
tional model to specify algorithms. Simple programs (especially functional programs) can
typically be modeled as a term rewriting system where a program state is expressed as a term
and evaluation is modeled by rewriting expressions using reduction rules. Higher-order term
rewriting in particular provides a natural model for functional programming languages. Due
to the abstract nature of rewriting, it is feasible to forgo specific language details and still
derive useful term rewriting results that may carry over to program analysis [3, 10, 15, 24].

In this paper, we study complexity, which in the context of term rewriting is typically
understood as the number of steps needed to reach a normal from when starting in terms of
a certain shape and size. A natural way to determine these bounds is adapting termination
proof techniques to deduce the complexity. There is a myriad of works following this idea. To
mention a few, see [4, 7, 9, 18, 19, 25] for interpretation methods, [8, 17, 31] for lexicographic
and path orders, and [16, 28] for dependency pairs.

However, those ideas are focused on first-order term rewriting. There is very little work
on complexity of higher-order term rewriting. While there is a lot of work on complexity of
functional programs [2, 13, 20, 26], this work uses quite different ideas from the methods
developed for term rewriting. It would be beneficial to combine these ideas.

In a previous work [21], we introduced an extension of the method of weakly monotonic
algebras [14, 29] to tuple interpretations. The idea of algebras is to choose an interpretation
domain A, and interpret terms s as elements JsK of A compositionally, in such a way that
whenever s → t we have JsK > JtK. Hence, a rewriting step on terms implies a strict decrease
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23:2 Cost–Size Semantics for Call-by-Value Higher-Order Rewriting

on A. The defining characteristic of tuple interpretations is to split the complexity measure
into abstract notions of cost and size. This coincides with ideas often used in resource
analysis of functional programs [2, 13]. This is a popular idea, as a very similar approach
was introduced for first-order rewriting around the same time [33].

This previous work considered full higher-order rewriting, so without an evaluation
strategy. However, this is not a very realistic setting, especially with the goal of eventually
extending the methodology to various functional programming languages. In practice,
program evaluation is deterministic, i.e., it follows a specific strategy such as call-by-value
evaluation. Reduction below a λ-binder is also not usually allowed. The difference can be
substantial: for instance for a pair of rules f x 0 → x, f x (s y) → f (pair x x) y, if x is
instantiated by a term that is not in normal form, the complexity is linear if we evaluate
call-by-value, and exponential with an arbitrary evaluation strategy. Also in complexity
analysis of first-order term rewriting, considering innermost evaluation is common [27, 28].

In this paper, our goal is to extend the work of [21] to weak call-by-value reduction. To
our knowledge, this is the first complexity method for higher-order term rewriting with an
evaluation strategy. While the restriction of the strategy leads to tighter complexity bounds,
the definitions needed to obtain these bounds are much more intricate, largely due to the
potential for rules and β-redexes of higher type. We believe that this will bring the method
of weakly monotonic algebras closer to the reality of functional program analysis.

Tuple interpretations do not provide a complete termination proof method: there are
terminating systems for which interpretations cannot be found. Consequently, it does not
induce a complete complexity analysis framework either. Notwithstanding, it has the potential
to be very powerful if we choose the cost–size sets wisely. A second limitation is that the
question whether a suitable interpretation exists is undecidable in general, which is expected
already in the polynomial case [23]. Undecidability never hindered computer scientists’ efforts
on mechanizing difficult problems, however. Indeed, several proof search methods have been
developed over the years to find interpretations automatically [6, 11, 12, 18, 33].

Contribution This paper will introduce tuple interpretations for higher-order term rewriting
systems using a weak call-by-value evaluation strategy, and use them to define both a
termination method under this strategy, and a new definition of weak call-by-value runtime
complexity along with a methodology to derive bounds for it.

This paper builds on the ideas of [21], which introduces tuple interpretations and a notion
of runtime complexity for full higher-order rewriting (without evaluation strategy). The
key difference here is our focus on a weak call-by-value evaluation strategy. This allows for
tighter bounds, but also requires significant technical changes. since the “cost” for a term of
higher type can no longer be captured by just a function (as we will explain in Section 3).

An additional change compared to [21] is that we have separated the cost and size
components into distinct functions. In [21], it is in theory allowed for the size component
to depend on the cost component, even though in practice this never happened. By fully
separating the components, it is easier to prove correctness of a given tuple interpretation.

Paper Overview In Section 2 we review basic notation on higher-order rewriting and define
our notion of call-by-value strategy. In Section 3 we give an informal overview of how the
technique works. These ideas are formalized in Sections 4 and 5 where we respectively provide
a formal cost–size semantics for simple types, and interpret terms as cost–size tuples as well
as proving some basic properties of them. We provide additional examples in Section 6. In
Section 7 we conclude the paper and discuss future work.
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2 Preliminaries

Unlike first-order rewriting, there is no single consensus formalism for higher-order rewriting,
but rather a variety of sometimes incompatible formats. The formalism we consider here is a
style of simply typed lambda calculus extended with function symbols and rules. The matching
mechanism is modulo alpha, and beta reduction is included in the rewriting relation. This is
essentially the formalism used in the higher-order category of the international termination
competition [32], but slightly simplified for easier representation.1

Types, Terms, and Equality Let B be a nonempty set whose elements are called base
types and range over ι, κ, ν. The set TB of simple types over B is generated by the grammar:
TB :− B | TB ⇒ TB. Types from TB range over σ, τ, ρ. The ⇒ type constructor is right-
associative, so we write σ ⇒ τ ⇒ ρ for (σ ⇒ (τ ⇒ ρ)). Notice that every simple type σ can
be written as τ1 ⇒ · · · ⇒ τn ⇒ ι. We informally say that the τi’s are the input types and the
base type ι is the output type. We abbreviate such types by τ ⇒ ι. The type order of a type
is the number: (a) ord(ι) = 0 and (b) ord(σ ⇒ τ) = max(1 + ord(σ), ord(τ)). A signature F
is a triple (B, Σ, ar) where B is a set of base types, Σ is a nonempty finite set of symbols, and
ar is a function ar : Σ −→ TB. For each type σ, we postulate the existence of a nonempty
set Xσ of countably many variables. Furthermore, we impose that Xσ ∩ Xτ = ∅ whenever
σ ̸= τ . Let X denote the family of sets (Xσ)σ∈TB

indexed by TB and assume that Σ ∩ X = ∅.
The set T(F,X) — of terms built from F and X — collects those expressions s for which

the judgment s : σ can be deduced using the following rules:

x ∈ Xσ
x : σ

f ∈ Σ ar(f) = σ

f : σ

s : σ ⇒ τ t : σ

(s t) : τ

x ∈ Xσ s : τ

(λx. s) : σ ⇒ τ

Application of terms is left-associative, so we write s t u for ((s t) u). Abstraction is right-
associative, so we write λxyz. s for λx. (λy. (λz. s)). Application takes precedence over
abstraction, which allows us to write λx. s t for λx. (s t). Unnecessary parentheses are
removed, and we write terms following these rules. The set fv(s) of free variables occurring
in s is defined as expected. A term s is closed if fv(s) = ∅. It is ground if no variable occurs
in it. A symbol f ∈ Σ is called the head symbol of s if s = f s1 . . . sk. A subterm of s is a term
t (we write s ⊵ t) such that (i) s = t; or (ii) t is a subterm of s′ or s′′, if s = s′ s′′; or t is a
subterm of s′, if s = λx. s′. A proper subterm of s is a subterm of s which is not equal to s.

A substitution γ is a type-preserving map from variables to terms such that the set
dom(γ) = {x ∈ X | γ(x) ̸= x} is finite. We may explicitly represent γ as a list of mappings
[x1 := s1, . . . , xk := sk]. The capture avoiding application of γ to s is defined as follows:

xγ = γ(x) (s t)γ = (sγ) (tγ)

fγ = f (λx. s)γ = λy. (s{x 7→y}γ), for y fresh

Here, s{x 7→y} denotes the term obtained by replacing every free occurrence of x by y in s.
The result of sγ is unique modulo α-renaming. We identify terms modulo α-equality, so
s = t denotes s =α t.

1 The format in the competition allows both function application and application as separate notions,
admitting the formation of terms such as f(s) · t. We here omit the functional notation, which is not
necessary since any term can be represented in a curried form. Beyond this, the formalism is the same,
including the permissiveness that left-hand sides do not need to be patterns or even in β-normal form.
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Higher-Order Rewriting A rewrite rule ℓ → r is a pair of terms of the same type such
that ℓ = f ℓ1 . . . ℓk and fv(r) ⊆ fv(ℓ). A term rewriting system (TRS)2 R is a set of rules. A
relation → on terms is monotonic if s → s′ implies t s → t s′, s u → s′ u, and λx. s → λx. s′;
for all terms t and u of appropriate types. The rewrite relation →R induced by R is the
smallest monotonic relation containing R union the β rule-scheme (i.e., (λx. s) t →β s[x :− t])
and closed under application of substitution. An R-reducible expression (redex) is a term of
form ℓγ for some rule ℓ → r and substitution γ. A β-redex is of the form (λx. s) t.

Every rewrite rule ℓ → r defines a symbol f, namely, the head symbol of ℓ. For each f ∈ Σ,
let Rf denote the set of rewrite rules that define f in R. A symbol f ∈ Σ is a defined symbol if
Rf ̸= ∅. A constructor symbol is a symbol c ∈ Σ such that Rf = ∅. We let Σdef be the set of
defined symbols and Σcon the set of constructor symbols. Hence, Σ = Σdef ⊎ Σcon. A ground
constructor term is a term c s1 . . . sn with n ≥ 0, where each si is a ground constructor term.

▶ Example 1. In this example we collect some common higher-order functions encoded as
rules: map applies a function to each element of a list; comp composes two functions, app is
the application functional, and rec encodes primitive recursion. Their monomorphic signature
is defined as expected with functional arguments of type nat ⇒ nat and lists having type list.

map F nil → nil comp F G → λx. F (G x)
map F (cons x xs) → cons (F x) (map F xs) app F → λx. F x

rec 0 y F → y rec (s x) y F → F x (rec x yF )

▶ Example 2. Some first-order functions over natural numbers:

dbl 0 → 0 add x 0 → 0 mult x 0 → 0
dbl (s x) → s(s (dbl x)) add x (s y) → s (add x y) mult x (s y) → add x (mult x y)

Call-by-Value Higher-order Rewriting In this paper, we are interested in a restricted
evaluation strategy, which limits reduction to terms whose immediate subterms are values:

▶ Definition 3. A term s is a value whenever s is:
of the form f v1 . . . vn, with each vi a value and there is no rule f ℓ1 . . . ℓk → r with k ≤ n;
an abstraction, i.e., s = λx. t.

Notice that by definition ground constructor terms are values, since there is no rule
c ℓ1 . . . ℓk → r for any k if c ∈ Σcon. More complex values include partially applied functions
and lambda-terms; for example, add 0 or a list of functions [add 0; λx.x; mult 0; dbl]. In the
weak call-by-value reduction strategy defined below, we shall not reduce under abstractions.

▶ Definition 4. The higher-order weak call-by-value rewrite relation →v induced by
R is defined as follows:

f (ℓ1γ) . . . (ℓkγ) →v rγ, if f ℓ1 . . . ℓk → r ∈ R and each ℓiγ is a value;
(λx. s) v →v s[x :− v], if v is a value;
s t →v s′ t if s →v s′; and s t →v s t′ if t →v t′.

2 Note that we use the acronym TRS for the style of higher-order term rewriting systems introduced
in this section; not for a limitation to first-order term rewriting systems as is sometimes done in the
literature. In this paper, we will not consider first-order TRSs as a special case at all.
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Notice that when instantiating rules we use value substitutions, that is, their image for
any nontrivial variable is always a value. All reductions in this paper are weak call-by-value.
So we drop the v from the arrow, and s → t should be read as s →v t. We use explicit
notation whenever confusion may arise.

We say that a term s is in normal form if there is no term t such that s →v t. A term s

has a normal form t if s →∗
v t and t is in normal form. A TRS R is terminating if no infinite

rewrite sequence s →v s1 →v . . . exists.

Ordered Sets and Monotonic Functions A quasi-ordered set (A, ⊒) consists of a nonempty
set A and a quasi-order (reflexive and transitive) ⊒ on A. An extended well-founded set
(A, >,≳) is a nonempty set A together with a well-founded order > and a quasi-order ≳ on
A such that ≳ is compatible with >, i.e., x > y implies x ≳ y and x > y ≳ z implies x > z.
Below we refer to an extended well-founded set simply as well-founded set. The unit set is
the quasi-ordered set ({u}, ⊒), with u ⊒ u.

Given quasi-ordered sets (A, ⊒) and (B, ⊒), a function f : A −→ B is weakly monotonic
if x ⊒ y implies f(x) ⊒ f(y). Let A =⇒ B denote the set of weakly monotonic functions
from A to B. The comparison operator ⊒ on B induces point-wise comparison on A =⇒ B

as follows: f ⊒ g if f(x) ⊒ g(x) for all x ∈ A. This way (A =⇒ B, ⊒) is also quasi-ordered.
Given well-founded sets (A, >,≳) and (B, >,≳), a function f : A −→ B is said to be strongly
monotonic if x > y implies f(x) > f(y) and x ≳ y implies f(x) ≳ f(y).

3 Cost–Size Overview

In this section we sketch the broad idea of the methodology, focusing on intuition.
To start, every term is associated with a size. For a closed term of base type, this size

could for instance be the number of symbols in its normal form; or a pair of integers, or a set
of terms (e.g., the set of all normal forms of the term). We only require that each base type
is associated with a quasi-ordered set with a minimum element. For a term of higher type,
the size is a weakly monotonic function, which provides a bound for applications of the term.

▶ Example 5. In the signature of Examples 1 and 2, we may let Size(0) = 1 and Size(s t) =
1 + Size(t); intuitively, the size of a ground constructor term of type nat is the number
of function symbols in it. For lists, we could let Size(nil) = (0, 0) and Size(cons s t) =
(Size(t)1 + 1, max(Size(s), Size(t)2)); intuitively, the size of a list of numbers is the pair
(list length, size of its greatest element). We could let Size(add s) be the function that maps
n to Size(s) + n, and Size(map) the function that takes a (weakly monotonic) function F

and a pair (l, m), and returns (l, F (m)); intuitively, if F bounds the size of the first argument,
and we are given a list with maximum element of size m and length l, then applying map to
these arguments yields a list which has length l, and elements have sizes bounded by F (m).

Aside from a size, we need to calculate a cost for each term to associate a bound on the
number of steps that can be taken from a given starting term. Aside from associating a
natural number bounding this cost to each term, terms of higher type have computational
content even in normal form; hence, we should associate a cost function to such terms: a
weakly monotonic function that indicates the cost of applying this term to a value.

▶ Example 6 (First idea for costs). Intuitively, the number of steps to evaluate add s t is
bounded by the cost of evaluating the arguments, plus Size(s) (as we easily see by inspecting
the rules defining add). Hence, we would let Cost(add s t) = Cost(s) + Cost(t) + Size(s), and
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could define Cost(add) = λλ(c1, s1), (c2, s2). c1 + c2 + s1. Note that the cost function takes a
pair of values for each argument: respectively, the cost and size of the argument.

For map, the number of steps to evaluate map s t depends heavily on s, even if both
s and t are values: map (λx.add x 0) t will take substantially fewer steps than evaluating
map (λx.mult x x) t. Hence, we should take the cost function for s into account as well as
its size. This yields Cost(map) = λλ(Fcost, Fsize), (qcost, (l, m)). qcost + l + 1 + l ∗ Fcost(0, m):
the number of steps to evaluate map s t is bounded by the cost of evaluating t first, then
applying s ⟨length of list⟩ times to the largest element of t, plus the 1 + ⟨length of list⟩ steps
for the evaluation of map itself. Note that since we use a call-by-value strategy, the list q is
evaluated to a value before the map rule fires, which is why Fcost is given a zero argument.

The cost for constructor applications c s1 · · · sm is always just Cost(s1) + · · · + Cost(sm),
since applying a constructor to terms does not lead to a further computation being done.

Examples 5 and 6 sketch an idea where Size(s t) = Size(s)(Size(t)) and Cost(s t) =
Cost(s)(Cost(t), Size(t)). Unfortunately, while this idea works well for sizes, it has some
issues for costs; most importantly, that the computational content of terms of higher types is
ignored. Although a term λx.s cannot be reduced, a term such as add (dbl 0) can be, and
the cost for the dbl 0 reduction should be included. Moreover, terms of higher type can
also reduce directly even when their subterms are values; e.g., comp s t or (λx.s) t of type
nat ⇒ nat.

Hence, we will instead consider a pair of costs: each term has a cost number (a bound on
the number of steps to reduce this term to normal form), and a cost function (which bounds
the cost of applying this normal form to a value, or is unit for base-type terms).

Unfortunately, this choice necessarily imposes a more complicated definition, since a pair
cannot be applied like a function can; e.g., if the cost of s is (12, λλ(xcost, xsize). xcost + xsize),
then when computing the cost for s t, we cannot just apply the function and forget the 12.
Hence, we will define (formally in Definition 16) an alternative interpretation of application,
so that, for s : σ ⇒ τ and t : σ, Cost(s t) = ( CostN um(s) + CostN um(t) + c, fun ), where
CostFun(s)(CostFun(t), Size(t)) is the pair (c, fun).

▶ Example 7 (Cost pairs). We let Cost(add) = ( 0, λλ(u1, n). ( 0, λλ(u2, m). n ) ): the
first 0 is the “cost number” for add, which is 0 because add is in normal form; and the
function λλ(u1, n). ( 0, λλ(u2, m). n ) takes a unit element and the size of a value, and
returns a new pair. With the rough definition of application above, we have Cost(add s) =
( CostN um(s), λλ(u, n). ( Size(s), u ) ). This matches the intuition that the number of steps
needed to reduce add s to normal form is just the number of steps needed to reduce s, and the
result is a value of function type which, if applied to a value with size n, can be normalized
in Size(s) steps. We obtain Cost(add s t) = Cost(s) + Cost(t) + Size(s) as expected.

The notation is rather cumbersome but is needed for the formal definition. In practice, we
can identify unit×A and A×unit with A for any set, and use (x1, . . . , xn) 7→ φ as shorthand
for ( 0, λλx1. ( 0, λλx2. . . . φ ) ). Then we can use the more palatable notation Cost(add) =
(n, m) 7→ n, or Cost(comp) = ((Fcost, Fsize), (Gcost, Gsize)) 7→ ( 2, λλxsize.Gcost(xsize) +
Fcost(Gsize(xsize)) ) for the symbol comp which admits a rule of higher type nat ⇒ nat.

With these definitions, if we can show that (Cost(ℓ), Size(ℓ)) ≻ (Cost(r), Size(r)) for all
value instances of rules, then CostN um(s) defines a bound on the number of steps that can
be taken to reduce s to normal form. We can use this to define bounds on the runtime
complexity of the rewriting system – that is, on the number of steps that can be done when
starting in certain kinds of terms of a given size (as we will discuss in Section 6).
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▶ Example 8. We choose Size(nil), Size(cons) and Size(map) following Example 5, and
let Cost(nil) = 0, Cost(cons) = (n, m) 7→ 0 and Cost(map) = ((Fcost, Fsize), (l, m)) 7→
l ∗ Fcost(m) + l + 1. Then, for a list cons h t with Size(t) = (l, m), we have

Size(map F (cons h t)) = (l + 1, Size(F )(max(Size(h)), m))
= (l + 1, max(Size(F )(Size(h)), Size(F )(m)))
= Size(cons (F h) (map F t))

by weak monotonicity of Size(F ). Taking into account that if F , h and t are values, then
they all have a cost number of 0, we also have:

Cost(map F (cons h t)) = (l + 1) ∗ CostFun(F )(max(Size(h), m)) + l + 2
> CostFun(F )(Size(h)) + l ∗ CostFun(F )(m) + l + 1
= Cost(cons (F h) (map F t))

Hence, all value instantiations of the left-hand side of this rule both have greater cost, and
greater-than-or-equal size, to the right-hand sides. If the other rules are similarly oriented,
we can conclude that CostN um(s) provides a bound on the reduction cost of s.

In the rest of this paper, the ideas above will be formally defined and their correctness
proven. We will not use the elaborate names CostN um, Size, etc., but rather define
interpretations as tuples that contain all these components.

4 Cost–Size Semantics for Simple Types

In this section we build a set-theoretical cost–size semantics to the simple types in TB. The
goal is to define a function L·M that maps each type σ ∈ TB to a well-founded set LσM, the
cost–size interpretation of σ. We start by formally defining what we mean by cost–size sets.

▶ Definition 9. Given a well-founded set (C, >,≳), called the cost set, and a quasi-ordered
set (S, ⊒), called the size set, we call C × S the cost–size product of (C, >,≳) and (S, ⊒),
and its elements cost–size tuples.

Given a cost–size product C × S, the well-foundedness of C and quasi-ordering on S
naturally induce an order structure on the product C × S as follows.

▶ Definition 10 (Product Order). Let (C, >,≳) × (S, ⊒) be a cost–size product. Then we
define the relations ≻,≽ over C × S as follows: for all ⟨x, y⟩ and ⟨x′, y′⟩ in C × S,

⟨x, y⟩ ≻ ⟨x′, y′⟩ iff x > x′ and y ⊒ y′, and
⟨x, y⟩ ≽ ⟨x′, y′⟩ iff x ≳ x′ and y ⊒ y′.

Next, we show that the triple (C × S, ≻,≽) is well-founded.

▶ Lemma 11. The triple (C × S, ≻,≽) defined in Definition 10 is a well-founded set.

Proof. It follows immediately from Definition 10 that ≻,≽ are transitive and ≽ is reflexive.
To show well-foundedness of ≻ we note that the existence of an infinite chain ⟨x1, y1⟩ ≻
⟨x2, y2⟩ ≻ · · · would imply x1 > x2 > · · ·, which cannot be the case since > is well-founded.
We still need to check that ≽ is compatible with ≻.

Suppose ⟨x, y⟩ ≻ ⟨x′, y′⟩. Since x > x′ implies x ≳ x′, we have ⟨x, y⟩ ≽ ⟨x′, y′⟩.
Suppose ⟨x, y⟩ ≻ ⟨x′, y′⟩ ≽ ⟨x′′, y′′⟩. Since x > x′ ≳ x′′ implies x > x′′ and ⊒ is transitive,
we have ⟨x, y⟩ ≻ ⟨x′′, y′′⟩. ◀

We shall use product orders to induce well-founded ordering on cost–size sets. Let us
define next the requirements for the sets used for size interpretations.

CVIT 2016
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▶ Definition 12 (Type Interpretation Key). Let B be a set of base types. An interpretation
key for B, denoted JB, is a function that maps each base type ι ∈ B to a quasi-ordered set
(JB(ι), ⊒) with a minimum element, i.e., it contains an element ⊥, such that x ⊒ ⊥ for all x.

▶ Example 13 (Cost–Size Tuples over natural numbers). A first example of an interpretation
key is that of tuples over N. For each ι ∈ B, JB/N(ι) is a set of the form (NK(ι), ⊒), with
K(ι) ≥ 1 and (x1, . . . , xK(ι)) ⊒ (y1, . . . , yK(ι)) iff xi ≥ yi for all 1 ≤ i ≤ K(ι). A minimum
element for such sets is (0, . . . , 0). Notice that (NK(ι), ⊒) is quasi-ordered for any choice of
K(ι) and JB/N is completely determined by a function mapping each ι ∈ B to K(ι) ∈ N.

The definition below formalizes our intuition for cost and size from Section 3. Given an
interpretation key JB we inductively interpret the elements of TB as cost–size products.

▶ Definition 14 (Interpretation of Types). Let JB be an interpretation key. We define for
each type σ the cost–size tuple interpretation of σ as the set LσM = Cσ × Sσ where Cσ

and Sσ are defined as follows (mutually with the set F c
σ):

Cσ = N × F c
σ Sι = JB(ι)

F c
ι = unit Sσ⇒τ = Sσ =⇒ Sτ

F c
σ⇒τ = (F c

σ × Sσ) =⇒ Cτ

The set LσM is ordered as follows:
⟨(n, f1), f2⟩ ≻ ⟨(m, g1), g2⟩ if n > m, f1 ≳ g1 and f2 ⊒ g2, and
⟨(n, f1), f2⟩ ≽ ⟨(m, g1), g2⟩ if n ≥ m, f1 ≳ g1 and f2 ⊒ g2.

We say a function f is a cost (size) function whenever f ∈ Fc
σ (f ∈ Sσ), for some type σ.

▶ Lemma 15. For any type σ, (Cσ, >,≳) is well-founded and (Sσ, ⊒) is quasi-ordered with
a minimum. Therefore, LσM is a cost–size product.

Proof. When σ is a base type, Cσ = N × unit ∼= N and Sσ = JB(σ), so the statement is
trivially true. Let σ = τ ⇒ ρ, then by induction hypothesis Sτ and Sρ are quasi-ordered.
Quasi-ordering of (Sτ⇒ρ, ⊒) follows from the induced point-wise comparison. A minimum
for this size set is the function λλx.⊥. Well-foundedness of (Cσ, ≻,≽) follows from Lemma 11
by showing that F c

τ⇒ρ is quasi ordered. ◀

To map each term s : σ to an element of LσM (Definition 25), we need a notion of
application for cost-size tuples. More precisely, assume given a type σ ⇒ τ and cost–size
tuples f ∈ Lσ ⇒ τM and x ∈ LσM. We define the application of f to x, denoted f · x, as
follows.

▶ Definition 16. Let σ ⇒ τ be an arrow type, f = ⟨(n, f c), f s⟩ ∈ Lσ ⇒ τM, and x =
⟨(m, xc), xs⟩ ∈ LσM. The semantic application of f to x, denoted f · x, is defined by:

let f c(xc, xs) = (k, h); then ⟨(n, f c), f s⟩ · ⟨(m, xc), xs⟩ = ⟨(n + m + k, h), f s(xs)⟩

We set the semantic application to be left-associative, so f · g · h denotes (f · g) · h.

▶ Example 17. Let us illustrate semantic application with a concrete example: consider
the type σ = (nat ⇒ nat) ⇒ list ⇒ list, which is the type of map defined in Example 1.
The function map takes as argument a function F : nat ⇒ nat and list q and applies F to
each element of q. This formalizes the cost and size ideas in Examples 5 and 6. Hence, the
cost–size interpretation of map is an element ⟨(n, f c), f s⟩ of LσM. Its cost component (n, f c)
is in Cσ = N × F c

σ which is composed of a numeric and functional component. The numeric
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component n carries the cost of partial application. Meanwhile, the functional component
in F c

σ is parametrized by functional arguments carrying the cost and size information of
F . Indeed, Definition 14 gives us f c : F c

nat⇒nat × Snat⇒nat =⇒ Clist⇒list, which can be written
explicitly as:

the functional cost of map︷ ︸︸ ︷(unit × N =⇒ N × unit)︸ ︷︷ ︸
cost of F

× (Snat =⇒ Snat)︸ ︷︷ ︸
size of F

 =⇒

N ×

unit︸ ︷︷ ︸
qc

× Slist︸︷︷︸
qs

=⇒ N × unit


The set for the size function is somewhat simpler with f s : (Snat =⇒ Snat) =⇒ Slist =⇒ Slist.

Therefore, we apply f to a cost-size tuple x of the form ⟨(m, xc), xs⟩ where xc is the cost
of computing F (so an element of F c

nat⇒nat) and xs is the size of F , so an element of Snat⇒nat.
We proceed by applying the respective functions so f c(xc, xs) = (k, h) belongs to Clist⇒list
and f s(xs) is in Slist⇒list. We put everything together and add the numeric components to
obtain: f · x = ⟨(n + m + k, h), f s(xs)⟩. Notice that this gives us a new cost–size tuple with
the cost component in N × (Clist =⇒ Clist) and size component in Slist =⇒ Slist, which is a
tuple in Llist ⇒ listM.

Observe that our intention with Definition 16 is that the semantic application conforms
with a form of “application typing rule”. A straightforward analysis on Definition 16 shows
that this is indeed the case. This is summarized in the lemma below.

▶ Lemma 18. If f ∈ Lσ ⇒ τM and x ∈ LσM, then f · x belongs to LτM.

Definition 14 gives us a family of cost–size sets T = {LσM}σ∈TB
indexed by TB, and

combined with Definition 16 we get a family of application operators

(T , ·) =
(

{LσM}σ∈TB
, {·σ,τ }σ,τ∈TB

)
, with ·σ,τ : Lσ ⇒ τM × LσM −→ LτM

We call the pair (T , ·) the cost–size type structure generated by the interpretation key JB.
Indeed, in the next Lemma we show that such structure preserves the orderings ≻ and ≽ on
cost–size tuples.

▶ Lemma 19. The application operator is strongly monotonic in both arguments.

Proof. We need to prove the following: (i) if f ≻ g and x ≽ y, then f · x ≻ g · y; (ii) if
f ≽ g and x ≻ y, then f · x ≻ g · y; (iii) if f ≽ g and x ≽ y, then f · x ≽ g · y. Consider
cost–size tuples f , g ∈ Lσ ⇒ τM and x, y ∈ LσM. Let f = ⟨(n, f c), f s⟩, g = ⟨(m, gc), gs⟩,
x = ⟨(j, xc), xs⟩, and y = ⟨(j′, yc), ys⟩. We proceed to show (i) and observe that (ii) and (iii)
follow similar reasoning. Indeed, if f ≻ g and x ≽ y we have that n > m, f c ≳ gc, f s ⊒ gs,
j ≥ j′, xc ≳ yc, and xs ⊒ ys. Let f c(xc, xs) = (k, h) and gc(yc, ys) = (k′, h′), we get:

f · x = ⟨(n + j + k, h), f s(xs)⟩ ≻ ⟨(m + j′ + k′, h′), gs(ys)⟩ = g · y

◀

▶ Remark 20. Notice that the type structure (T , ·) is nonstandard. Indeed, the intended
standard semantics given to arrow types is usually a functional space [5, Chapter 3]. So
inhabitants of functional types are interpreted as functions. Since our intention with
defining cost–size type structures as above is to capture the complexity-wise behavior of
functions (defined by rewriting rules) and a cost component associated with the computational
environment, this non-standardness is expected. In the next sections we show that even
though our interpretations do not give rise to a standard semantic of simple types, we can
still prove classical lemmata for substitution and compatibility.
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▶ Example 21. In Examples 1 and 2 we have two examples of base types: nat and list.
Values of type nat are built using the constructors 0 : nat and s : nat ⇒ nat. Similarly, for list
we have nil : list and cons : nat ⇒ list ⇒ list.

Let us give a cost–size type structure over N (Example 13) for B = {nat, list}. Essentially,
we need to choose the numbers K(nat), K(list) associated with nat and list, respectively. To
do so we take the intentional size semantic of nat, list into account. Let us set K(nat) = 1
and K(list) = 2. This exactly gives the size sets we used in Section 3, and allows us to use
“number of symbols” as a notion of size in a unary representation of numbers, and (length,
maximum element size) as a size notion for lists. Intuitively, since a list is a container-like
data structure we want to be able to simultaneously give upper bounds to “the size of the
container” (which is length for lists) and “the size of its elements”. This choice of JB/N affects
the shape of interpretations for symbols in Σ, as we will see in Example 23.

Even though we have manually chosen the size tuples for JB/N above, an automated
procedure can still be devised to determine the number K(ι), for ι ∈ B. A description of
such a procedure can be found in [22].

5 Cost–Size Semantics for Terms

In the previous section, we established a cost–size semantics for the simple types in TB. Our
goal in this section is to interpret terms as elements of those sets.

An interpretation of a signature F = (B, Σ, ar) interprets the base types in B and each
f ∈ Σ of arity ar(f) = σ as an element of LσM which is constructed by Definition 14. This is
formally stated in the definition below.

▶ Definition 22. A cost–size tuple interpretation F for a signature F = (B, Σ, ar)
consists of a pair of functions (JB, JΣ) where

JB is a type interpretation key (Definition 12),
JΣ is an interpretation of symbols in Σ which maps each f ∈ Σ with ar(f) = σ to a
cost–size tuple in LσM, where LσM is built using JB in Definition 14.

In what follows we slightly abuse notation by writing Jf for JΣ(f) and just J for JΣ.

▶ Example 23. As a first example of interpretation, let us interpret the data signature from
Example 21. Recall that 0 : nat, s : nat ⇒ nat are the constructors for nat and K(nat) = 1.

J0 =
〈

(0, u) , 1
〉

Js =
〈

(0, λλx.(0, u)) , λλx.x + 1
〉

The highlighted cost components for the constructors are filled with zeroes. That is because
in the rewriting cost model data values do not fire rewriting sequences. In the language of
Section 3: the cost number for 0 is 0, (because it is a value), the cost function is u (because
it has base type), and size component is 1 (since we chose a notion of size for terms of type
nat to mean “number of symbols”). The cost number for s is 0, the cost function is the
constant function mapping to 0, and the size component is the function λλx.x + 1 in Snat⇒nat.
We interpret the constructors for list, i.e., nil and cons, following the same principle, with
K(list) = 2. We write a size tuple q in Slist as (ql, qm) since the first component is to mean
the length of the list and the second a bound on the size of its elements.

Jnil =
〈

(0, u) , (0, 0)
〉

Jcons =
〈

(0, λλx.(0, λλq.(0, u))) , λλxq.(ql + 1, max(x, qm))
〉

The highlighted cost components are filled with zeroes for lists as well. Size components are
interpreted as expected, and exactly following Example 5.
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The next step is to extend the interpretation of a signature F to the set of terms. But
first, we define valuation functions to interpret the variables in x : σ as elements of LσM.

▶ Definition 24. A cost–size valuation α is a function that maps each x : σ to a cost-size
tuple in LσM such that:

α(x) = ⟨(0, u), xs⟩, for all x ∈ X of base type, and
α(F ) = ⟨(0, F c), F s⟩ when F :: σ ⇒ τ .

Notice that, in this definition, the cost component of α(x) has the form (0, u), if x : ι.
This interpretation is motivated by Definition 4, where a matching substitution γ (i.e., a
substitution such that ℓγ →v rγ) must map each x : ι to a value of base type. Those can only
have the form c(v1, . . . , vm) with c ∈ Σcon. Variables of arrow type still have a cost number
0; however, they can be instantiated to values that carry indirect computational content:
a partial application or abstraction. For instance, a variable of type F : nat ⇒ nat can be
instantiated with add 0, which is a value that produces a cost as soon as it is applied to the
next argument. We use the notation F c/F s to denote the cost/size component of α(F ).

▶ Definition 25. Assume given a signature F = (B, Σ, ar) and its cost–size tuple interpretation
F = (JB, J) together with a valuation α. The term interpretation JsKJ

α of s under J and
α is defined by induction on the structure of s as follows:

JxKJ
α = α(x) JfKJ

α = Jf Js tKJ
α = JsKJ

α · JtKJ
α

Jλx. sKJ
α =

〈(
0, λλd.(1 + π11(JsKJ

[x:−d]α), π12(JsKJ
[x:−d]α))

)
, λλds.π2(JsKJ

[x:−(0,d)]α)
〉

,

where πi is the projection on the ith-component and πij is the composition πj ◦ πi, and 0 is
a cost function of the form λλx1.(0, λλx2 . . . (0, u) . . . ). If d = (dc, ds), the notation [x :− d]α
denotes the valuation that maps x to ⟨(0, dc), ds⟩ and every other variable y to α(y).

We write JsK for JsKJ
α whenever α and J are universally quantified or clear from the context.

The interpretation for abstractions may seem baroque, but can be understood as follows:
an abstraction is a value, so its cost number is 0. The cost of applying that abstraction on a
value v is 1 plus the cost number for s[x := v] – which is obtained by evaluating JsKJ

[x:−d]α if
d is the cost function/size pair for v. The cost function of this application is exactly the cost
function of s[x := v]. The size of an abstraction λx.s is exactly the function that takes a size
and maps it to the size interpretation of s where x is mapped to that size. Technically, to
obtain the size component of JsKJ

[x:−d]α we also need a cost component, but by definition, this
component does not play a role, so we can safely choose an arbitrary pair 0 in the right set.

▶ Example 26. We continue with Example 23 by interpreting ground constructor terms
fully. A ground constructor term d of type nat is of the form s (s . . . (s 0) . . . ) where the
number n ∈ N is represented by n successive applications of s to 0. Let us write n as
shorthand notation for such terms. Similarly, for ground constructor terms of type list,
we write [n1; . . . ; nk] for the term cons n1 . . . (cons nk nil). The empty list constructor nil is
written as [] in this notation. Hence, the cost–size interpretation of 3 : nat is given by:

J3K = Js (s (s 0))K = JsK · (JsK · (JsK · J0K)) =
〈

(0, u) , 4
〉

.

Consider, for instance, the list [1; 7; 9]. Its cost–size interpretation is given by:

J[1; 7; 9]K = Jcons 1 (cons 7 (cons 9 nil))K =
〈

(0, u) , (3, 10)
〉

.

The important information we can extract from such interpretations is their size component.
Indeed, J3Ks = 4 counts the number of constructor symbols in the term representation 3 and
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J[1; 7; 9]Ks = (3, 10) gives us the length and an upper bound on the size of each element in
[1; 7; 9]. The size interpretation for the constructors of nat and list correctly capture our
notion of “size” given in Example 21.

The next Lemma expresses the soundness of term interpretation, that is, the interpretation
of terms preserves the type structure:

▶ Lemma 27 (Type Soundness). If s : σ then JsK ∈ LσM.

Proof. The proof is by induction on the structure of s. The base cases follow directly from
Definitions 22 and 24. We use Lemmas 18 and 19 in the application case. The abstraction
case follows from the induction hypothesis and weak monotonicity of πi. ◀

Up to now, we have given cost–size semantics for types and terms. Observe that
Definition 22 only requires that we interpret function symbols as cost–size tuples in the
correct domain. For instance, we might interpret all function components as constant
functions. This is a valid, but not so useful, interpretation of terms. So we move on to the
next component of our interpretation framework: we want to interpret terms in such a way
that JsK ≻ JtK whenever s → t, for any pair of terms s, t.

▶ Definition 28. Consider a signature F = (B, Σ, ar). A cost–size call-by-value termina-
tion model for a term rewriting system (F,R) consists of the following ingredients:

an interpretation key JB (Definition 12), together with
a cost–size interpretation (JB, JΣ) (Definition 22),

such that the following compatibility conditions hold:
for all value substitutions γ and all terms s and t, JsγK ≻ JtγK whenever JsK ≻ JtK;
for every term s and value v, J(λx. s) vK ≻ Js[x :− v]K;
for all terms s and t,

Js tK ≻ Js′ tK whenever JsK ≻ Js′K, and Js tK ≻ Js t′K whenever JtK ≻ Jt′K;
for all rules ℓ → r ∈ R, we have JℓK ≻ JrK.

Roughly speaking, a call-by-value termination model is an interpretation of types and
terms that is compatible with each rule in R, the call-by-value beta rule and the formation
of terms, and which is closed under value substitutions. By a straightforward induction on
the reduction s →v t, we can establish the following result.

▶ Theorem 29. Let (F,R) be a TRS. If we have a termination model of (F,R), then the
higher-order call-by-value rewriting relation →v is strongly normalizing.

Hence, termination models collect sufficient conditions for strong normalization. The
lemmata below are to show that cost–size interpretations satisfy some of the compatibility
conditions for termination models. Let us first prove closure under substitutions.

▶ Definition 30. Given a substitution γ and valuation α, we define the γ-extension of α

as the valuation defined by αγ = J·KJ
α ◦ γ.

▶ Lemma 31. If x /∈ fv(s) then JsK[x:−d]α = JsKα. Consequently, if x is not free in yγ for
any variable y, then ([x :− d]α)γ = [x :− d]αγ .

▶ Lemma 32 (Substitution Lemma). For any value substitution γ and valuation α, we have
that JsγKα = JsKαγ .
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Proof. Let us work out the abstraction case s = λx. t. Since we assume that the application
of substitution is capture-avoiding, we can assume that x does not occur free in any term in
the range of γ. Hence,

Jλx. (tγ)Kα =
〈(

0, λλd.(1 + π11(JtγKJ
[x:−d]α), π12(JtγKJ

[x:−d]α))
)

, λλds.π2(JtγKJ
[x:−(0,d)]α)

〉
IH=

〈(
0, λλd.(1 + π11(JtKJ

([x:−d]α)γ ), π12(JtKJ
([x:−d]α)γ ))

)
, λλds.π2(JtKJ

([x:−(0,d)]α)γ )
〉

=
〈(

0, λλd.(1 + π11(JtKJ
[x:−d]αγ ), π12(JtKJ

[x:−d]αγ ))
)

, λλds.π2(JtKJ
[x:−(0,d)]αγ )

〉
= Jλx. tKαγ .

◀

As a consequence of the substitution lemma, if JsKJ
α ≻ JtKJ

α for all α, then JsγKJ
α ≻ JtγKJ

α

for all α. Consequently, the first compatibility condition is valid for any interpretation. The
second compatibility requirement is for β reductions.

▶ Lemma 33. The call-by-value beta rule scheme (λx. s) v →v s[x :− v] is strictly decreasing
for any cost–size interpretation.

Proof. The proof reduces to checking J(λx. s) vK ≻ Js[x :− v]K. Let JvK = ⟨(0, vc), vs⟩, and
denote V for the pair (vc, vs). Then we have the following:

J(λx. s) vK = Jλx. sK · JvK

=
〈(

0, λλd.(1 + π11(JsKJ
[x:−d]α), π12(JsKJ

[x:−d]α))
)

, λλds.π2(JsKJ
[x:−(0,ds)]α)

〉
· JvK

=
〈(

0 + 0 + 1 + π11(JsKJ
[x:−V ]α), π12(JsKJ

[x:−V ]α)
)

, π2(JsKJ
[x:−⟨0,vs⟩]α)

〉
≻

〈(
π11(JsKJ

[x:−V ]α), π12(JsKJ
[x:−V ]α)

)
, π2(JsKJ

[x:−V ]α)
〉

= Js[x :− v]Kα.

In the second-to-last step, we use that the size component of JsKJ
α does not regard any

cost component in α, so π2(JsKJ
[x:−⟨0,vs)⟩]α) = π2(JsKJ

[x:−V ]α). In the last step, we use the
substitution lemma. ◀

Compatibility over applicative terms is a consequence of Lemma 19. Notice that the
results above do not depend on a particular interpretation. Hence, to establish a termination
model for a TRS, only the last compatibility condition remains to be checked, i.e., JℓK ≻ JrK
for all rules ℓ → r in R. We collect this fact below, which is a consequence of Theorem 29
and the Lemmas above.

▶ Corollary 34. Let R be a TRS that admits a cost–size interpretation (JB, JΣ). If JℓK ≻ JrK
for all rules ℓ → r in R, then R is a termination model, and consequently strongly normalizing.

Interpretation techniques are usually applied to show full termination [7, 18, 25] or as
quasi-orderings for the dependency pair approach [1]. In the next example, we show that
cost–size interpretations are weak enough to prove termination of call-by-value systems that
do not necessarily terminate under full rewriting.

▶ Example 35. Let a, b : ι, g : ι ⇒ ι ⇒ ι, and f : ι ⇒ ι ⇒ ι ⇒ ι. The rewrite system introduced
by Toyama [30] and defined by R = {g x y → x, g x y → y, f a b z → f z z z} was given to
show that termination is not modular for disjoint unions of TRSs. Indeed, it admits the
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infinite rewriting sequence f a b (g a b) →R f (g a b) (g a b) (g a b) →+
R f a b (g a b), whereas the

systems Rg and Rf are individually terminating. If we restrict reductions to call-by-value,
then the rewrite relation →v induced by R is terminating.

In order to prove termination of R, we introduce a non-numeric notion of size. Let
JB(ι) = P(T(F,X)), i.e., the set of all subsets of T(F,X). This set is partially ordered
by inclusion, so we define x ⊒ y iff x ⊇ y which is a quasi-order. Consider the following
interpretation:

Ja =
〈

(0, u) , {a}
〉

Jg =
〈

(0, λλx.(0, λλy.(1, u))) , λλxy.x ∪ y
〉

Jb =
〈

(0, u) , {b}
〉

Jf =
〈

(0, λλx.(0, λλy.(0, λλz.(H(x, y), u)))) , λλxyz.∅
〉

,

where H is a helper function defined by H(x, y) = if xs ⊒ {a} ∧ ys ⊒ {b} then 1 else 0.
Notice that H is weakly monotonic, and the size tuples for interpretation of values are
sets of cardinality ≤ 1. Checking compatibility for this interpretation is straightforward:
Jg x yK = ⟨(1, u), x ∪ y⟩ ≻ ⟨(0, u), x⟩ = JxK and Jg x yK = ⟨(1, u), x ∪ y⟩ ≻ ⟨(0, u), y⟩ = JyK;
and finally Jf a b zK = ⟨(1, u), ∅⟩ ≻ ⟨(0, u), ∅⟩ = Jf z z zK, because any instantiation of z is
necessarily a value, so it cannot include both a and b.

6 Complexity Analysis of Call-by-Value Rewriting

In the previous section, we showed that cost–size tuples can be used to establish termination
of call-by-value rewriting. In this section, we concentrate on a quantitative analysis of such
termination proofs. Hence, the goal is not merely to find tuple interpretations that prove
termination but also ones that establish “good” upper bounds on the complexity of reducing
terms to normal form. To start, we will extend the notion of derivation height to our setting:

▶ Definition 36. The weak call-by-value derivation height of a term s, notation dhR(s), is
the largest number n such that s →v s1 →v . . . →v sn.

This notion is defined for all terms when the TRS is terminating. We will simply refer to the
weak call-by-value derivation height as “derivation height”.

The methodology of weakly monotonic algebras offers a systematic way to derive bounds
for the derivation height of a given term:

▶ Lemma 37. If JsK = ⟨(n, F c), F s⟩, then dhR(s) ≤ n.

Proof. By the lemmas in Section 5 we see that JsK ≻ JtK whenever s → t. Since this implies
π11(s) > π11(t), the lemma follows. ◀

As an illustration of how this is used, we present the formalized examples of Section 3
and complete the interpretation of Examples 1 and 2.

Let us start with the system Radd which intuitively defines addition over nat. We will use
the type and constructor interpretations as given in Example 23. The rules add x 0 → 0 and
add x (s y) → s (add x y) suggest the following cost–size interpretation:

Jadd =
〈

(0, λλx.(0, λλy.(ys, u))) , λλxy.x + y
〉

.

Notice that the (highlighted) cost component of Jadd suggest a linear cost measure for
computing with add. We also set the intermediate numeric components in the cost tuple to
zero. The reason for this choice is that in a cost tuple Cσ = N × F c

σ, the numeric component
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N captures the cost of partially applying terms, which is 0 in this case. Using the shorthand
notation of Example 7), we could alternatively write Jadd = ⟨(xs, ys) 7→ ys, λλxsys.xs + ys⟩.

Now, consider the partially applied term s = add (add 2 3) (of type nat ⇒ nat). Intuitively,
the cost of reducing this term to normal form, is the cost of reducing the subterm add 2 3 to
5, since the partially applied term add 5 cannot be reduced. Hence, dhR(s) = 4. This is also
the bound we find through interpretation:

JsK = JaddK · (JaddK · J2K · J3K)
= JaddK · ⟨(4, u), 7⟩

=
〈

(4, λλy.(ys, u)) , λλy.7 + y
〉

.

While in this case the bound we find is tight, this is not always the case; for instance
Jadd 0 (add 0 0)K = ⟨(3, u), 3⟩, even though dhR(add 0 (add 0 0)) = 2. We could obtain a
tight bound by choosing a different interpretation, but this is also not always possible.

▶ Remark 38. Intuitively, we think of the numeric component of a partially applied term
f s1 . . . sn that cannot be reduced at the root as the “environment cost” of computing
functional arguments to values. This plays an important role in the complexity analysis in
our setting. Namely, when interpreting terms this is what allows us to limit interest to value
substitutions, since the cost of reducing arguments to values is captured implicitly by the
· operator. This assumption consequently allows us to limit the class of cost functions to
weakly monotonic functions as used in Definition 14, as opposed to the strongly monotonic
functionals used in the full rewriting setting [21, 29].

In complexity analysis of term rewriting, it is common to consider bounds on the derivation
height for terms of a given size. However, it is useful to impose some limitations. Consider
for example a TRS consisting only of the two add rules. Then, we might construct a term
(λx.add x x) ((λx.add x x) (. . . (s 0) . . . )), with n occurrences of (λx.add x x). The size of
this term is linear in n, but its derivation height is exponential, since each contraction of
a λ essentially duplicates the number of s occurrences. Hence, the traditional notion of
derivational complexity (which maps a natural number n to the largest derivation height a
term of size n can have) is arguably not so useful in a setting with λ.

Instead, we will consider the runtime complexity of a TRS. Following the definition in
[21] for full higher-order runtime complexity, we define:

▶ Definition 39. A data constructor is a constructor with a type ι1 ⇒ . . . ⇒ ιm ⇒ κ, with
κ and all ιi base types.

A data term is a value of the form c d1 . . . dm with c : ι1 ⇒ . . . ⇒ ιm ⇒ κ a data
constructor, and each di a data term; that is, it is a value without any higher-order subterm.

A basic term is a base-type term of the form f d1 . . . dm with f ∈ Σdef a defined symbol
and all di data terms.

The weak call-by-value runtime complexity of a TRS is the function n 7→ rc(n) that maps
each natural number n to the largest number h with dhR(s) = h for some term s of size n.

Note that for instance lists of functions are not data terms, and therefore not considered
as viable inputs in the notion of runtime complexity. As discussed in [21] this arguably makes
the notion somewhat first-order, but it can still be used to analyse higher-order programs or
modules (so long as they, for instance, have a rule start x → r where x has base type, and r

is allowed to use abstractions, partial application or calls to higher-order functions).
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▶ Example 40. Let us collect the interpretation for dbl and mult from Example 2.

Jdbl =
〈

(0, λλx.(xs, u)) , λλx.2x
〉

Jmult =
〈

(0, λλx.(0, λλy.2xsys, u)) , λλxy.xy
〉

In the TRS of Example 2, the only basic terms have the form add v1 v2 or dbl v or
mult v1 v2. Since Jsn 0Ks = n + 1, Lemma 37 allows us to conclude that rc(n) < n2.

Now, the size bound for data constructors introduced in Example 23 is well-behaved.
However, suppose we had defined J0 = ⟨(0, u), 1⟩ and Js = ⟨(0, λλx.(0, u)), λλx.2x + 1⟩. In
this case, for a data term n = sn 0, we would have JnKs = 2n + n ≥ 2n. As a result, we would
only be able to derive exponential runtime complexity. Notice that this choice is compatible
with Radd, and hence proves its termination; however, it induces an exponential overhead
on the cost tuple of add, whose actual runtime complexity is linearly bounded as we saw in
Example 40. Such a huge overestimation is not desirable in a complexity analysis setting.
This behavior suggests an upper bound to the interpretation of data constructors; namely,
we seek to bound the constructor’s size interpretations additively.

Let c be a data constructor of type σ = ι1 ⇒ . . . ⇒ ιm ⇒ κ. The size component
of LσM is Sσ = NK(ι1) =⇒ . . . =⇒ NK(ιm) =⇒ NK(κ). The size tuple J s

c when fully
applied can be written in terms of its functional components. Hence, J s

c (x1, . . . , xm) =〈
f s

1(x1, . . . , xm), . . . , f s
K(κ)(x1, . . . , xm)

〉
.

▶ Definition 41. If c : σ is a data constructor as above, we say J s
c is additive if there is a

constant a ∈ N such that
∑K(κ)

l=1 f s
l (x1, . . . , xm) ≤ a +

∑m
i=1

∑K(ιi)
j=1 xij .

It is easy to show that size components for nat and list in Example 23 are additive.
If data constructors are additive, and there are only finitely many of them, then there

exists a constant a such that, for every data term d of size n: JdKs ≤ an. Hence, for instance
the following result from [21] also extends to our setting:

▶ Lemma 42 (From [21]; Corollary 33). Let R be a TRS. If all interpretations for data
constructors are additive and the interpretations for all defined symbols are polynomially
bounded, then the weak call-by-value runtime complexity of R is polynomially bounded.

This result provides us with a systematic approach to establishing bounds to the runtime
complexity of weak call-by-value systems. The difficulty now lies in developing techniques to
find suitable interpretation shapes. For instance, a first example of a higher-order function
over lists is that of map. We studied the structure of its cost–size tuples in Example 17 to
illustrate semantical application. We give a concrete cost–size interpretation for map below:

Jmap =
〈

(0, λλF.(0, λλq.(ql + F c(u, qm)ql + 1, u))) , λλFq.(ql, F (qm))
〉

,

The highlighted cost component accounts for ql possible β steps, the cost of applying the
higher-order argument F over the list q is bounded by F c(u, qm)ql since F c is assumed to be
weakly monotonic, and the unitary component is for dealing with the empty list case.

Finding such interpretations for higher-order systems can become quite challenging. In
the example below we collect basic weakly monotonic combinators in order to generate more
complex cost/size interpretations.

▶ Example 43. We list the following weakly monotonic combinators. Here, sets X, Y, Z are
used generically to denote cost/size sets:
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for any X and a ∈ Y , there is a constant functional λλx.a in X =⇒ Y ;
for f : X =⇒ Y and g : Y =⇒ Z, we write g ◦ f : X =⇒ Z as the composition of f and g.
the projection function on the ith coordinate, πi : X1 × · · · × Xk =⇒ Xi;
given f : X =⇒ Y and g : X =⇒ Z, we have a function ⟨f, g⟩ : X =⇒ Y × Z which is
defined by ⟨f, g⟩ (x) = ⟨f(x), g(x)⟩;
given f : Y × X =⇒ Z, we get a function λλf : X =⇒ (Y =⇒ Z). For each x ∈ X and
y ∈ Y , we define (λλf (x))(y) = f(y, x);
given f : X =⇒ (Y =⇒ Z) and g : X =⇒ Y , we obtain f . g : X =⇒ Z, which is defined
as (f . g)(x) = f(x)(g(x));
given f : X =⇒ Y and x ∈ X, we have an element application functional with domain
appx : (X =⇒ Y ) =⇒ Y which sends f to f(x), i.e., appx(f) = f(x).

Notice that we can use the combinators above with the usual monotonic functionals and
operators over N to produce new monotonic functionals and pointwise operators over sets
X =⇒ Y . For instance, we can utilize +, ∗, ⌊·⌋, max, log(⌊·⌋), and so forth.

These basic weakly monotonic functions provide the building blocks for constructing cost–size
interpretations.

▶ Example 44. The higher-order functions in Example 1 admit the following interpretations:

Japp =
〈

(0, λλF.(2, λλx.(F c(u, xs), u))) , λλFx.F (x)
〉

Jcomp =
〈

(0, λλF.(0, λλG.(2, λλx.(F c(u, Gs(xs)) + Gc(u, xs), u)))) , λλFGx.F (G(x))
〉

Jrec =
〈

(0, λλx.(0, λλy.(0, λλF.(xs + Hc(x, y, F ), u)))) , λλxyF.Hs(x, y, F )
〉

In the cost component for Jrec, the term xs computes the total number of rewriting steps
using the rec symbol. Meanwhile, Hc is an auxiliary symbol computing the total cost of
recursively applying the higher-order argument F . It can be defined as follows

Hc(x, y, F ) =
xs−1∑
i=1

π1(F c((u, i), (u, Hs(i, ys, F s))))

with the size helper function Hs given as a weakly monotonic variant of the recursor over N:

Hs(x, y, F ) =
{

y if x ≤ 1
max(y, F (x − 1, Hs(x − 1, y, F ))) if x > 1

7 Conclusions and Future Work

In this paper we introduced an interpretation method for higher-order rewriting with weak call-
by-value reduction. In this approach, we build on existing work defining tuple interpretations
[21, 33], but restrict the evaluation strategy, and define a cost–size semantics for types and
terms which generates a whole new class of cost–size termination models that can be used to
reason about both termination and complexity of weak call-by-value systems. We showed
that cost–size tuples correctly capture call-by-value termination and allow us to bound both
the cost (number of steps to reach normal forms) and a variety of size notions for different
data types. A second advantage of our approach compared to [21] is that the cost functionals
are now weakly rather than strongly monotonic functionals, which simplifies the search for
cost interpretations.

This is foundational work in the research direction of transposing the methodology and
tools from (higher-order) term rewriting to program analysis. A first step for future work is to
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consider more expressive type theories, so we can capture more programs. For instance, the
power of the techniques developed here would be greatly improved if polymorphic types are
taken into account. A second step is to expand other complexity methods for innermost/call-
by-value rewriting to the higher-order setting, such as dependency tuples [27] or polynomial
path orders [3]. Also for termination analysis, it would be interesting to combine tuple
interpretations with a higher-order variant of innermost dependency pairs [28], similar to
what was done for full rewriting with tuple interpretations in [22].

Finally, we plan to implement this work, to automatically derive bounds to the derivation
height of individual terms, as well as provide bounds for both full and call-by-value runtime
complexity of higher-order term rewriting systems. The automation approach could build on
the strategy for higher-order polynomial interpretations for full rewriting (not using tuples)
in [14, Section 5]. While the search for tuple interpretations has more unknowns than the
search for interpretations to N, and will therefore likely take longer, we expect that the
overall methodology can stay largely unchanged at least when it comes to an unrestricted
evaluation strategy. Adapting to weak call-by-value rewriting may require some additional
study, however.
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