
Submitted to:
c© C. Kop

This work is licensed under the
Creative Commons Attribution License.

Transformations of higher-order term rewrite systems

Cynthia Kop
Department of Theoretical Computer Science

Vrije Universiteit, Amsterdam
kop@few.vu.nl

We study the common ground and differences of different frameworks for higher-order rewrit-
ing from the viewpoint of termination by encompassing them in a generalised framework.

1 Introduction

In the past decades a lot of research has been done on termination of term rewrite systems. How-
ever, the specialised area of higher order rewriting is sadly lagging behind. There are many reasons
for this. Primarily, the topic is relatively difficult, mostly due to the presence of the beta rule. Ap-
plications are also not in as much abudance as with first order rewriting. A third limiting factor is
the lack of a set standard. There are several important formalisms, each dealing with the higher
order aspect in a different way, plus many variations and restrictions. Because of the differences
in what is and is not allowed, results in one formalism do not trivially, or not at all, carry over to
another. As such it is difficult to reuse results in a slightly different context, which necessitates a
lot of double work.

In this paper we present work in progress investigating the common ground and differences of
various formalisms from the viewpoint of termination. We introduce yet another formalism, but
show how the usual styles of rewriting can be represented in it. We then look into properties within
the general formalism and show which ones can always be obtained by transforming the system
and which cannot. Finally, to demonstrate that the system is not too general to work with, we
extend the Computability Path Ordering [2] to our formalism.

2 The formalism

In this section we introduce a formalism of higher-order rewriting, called Higher Order Decidable
Rewrite Systems.

types We assume a set of base sorts B and a set of type variables A . Each (base) sort b has a
fixed arity, notation: b : n; at least one sort has arity 0. A polymorphic type is an expression over
B and A built according to the following grammar:

T = α|b(T n)|T →T (α ∈A , b : n ∈B)

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Transformations of higher-order TRSs

A monomorphic type does not contain type variables. A type is composed if it is headed by the
arrow symbol. A type b() with b : 0 ∈ B is denoted as just b. The→ associates to the right.
We say σ ≥ τ if τ can be obtained from σ by substituting types for type variables. For example,
α ≥ α ≥ α→β ≥ N→N, but not α→α ≥ N→R.

(meta-)terms A metaterm is a typed expression over a set F of typed constants (also known as
function symbols) f : σ and infinite set V of variables. We define the set of metaterms M together
with a set V ar of free variables for each metaterm recursively with the following rules:
(var) xτ : τ ∈M if x ∈ V V ar(xτ) = {xτ}
(fun) fτ : τ ∈M if f : σ ∈F and σ ≥ τ V ar(fτ) = /0
(abs) λxσ .s : σ→τ if x ∈ V , s : τ ∈M and V ar(λxσ .s) = V ar(s)\{xσ}

∈M V ar(s)∪{xσ} UT(∗∗)
(app) s · t : τ ∈M if s : σ→τ ∈M, t : σ ∈M V ar(s · t) = V ar(s)∪V ar(t)

and V ar(s)∪V ar(t) UT
(meta) Xσ [s1, . . . ,sn] if σ = σ1→ . . .σn→τ and V ar(Xσ [s1, . . . ,sn]) =

: τ ∈M s1 : σ1, . . . ,sn : σn and {Xσ}∪
⋃

i V ar(si)
{Xσ}∪

⋃
i V ar(si) UT

(**) A set V of typed variables is called UT, uniquely typed, if for any xσ ∈ V there is no xτ ∈ V
with σ 6= τ .

A metaterm generated without clause (meta) is a term. We work modulo renaming of variables
bound by an abstraction operator (α-conversion). Explicit typing of terms will usually be omitted.
The · operator associates to the left, so a metaterm s · t · r should be read as (s · t) · r. We will adopt
the custom of writing a (meta-)term s · t1 · · · tn in the form s(t1, . . . , tn).

type substitution A type substitution is a mapping p : A → T . For any metaterm s let s′p
be s with all type variables α replaced by p(α). As an example, (ifbool→α→α→α(Xbool,Yα ,0α) :
α)′{α → N}= ifbool→N→N→N(Xbool,YN,0N).

We say s≥ t if there is a substitution p such that s = t ′p. Given a typable expression s (that is,
a term with some type indicators omitted), it has a principal term t, which is≥ any term r obtained
from s by filling in type indicators. When a term is displayed with type indicators missing, we
always mean its principal term. For example, if f : α→α ∈F , the principal term of f is fα→α ,
whereas the principal term of f (0N) is fN→N(0N).

term and metaterm substitution A (term) substitution is the homomorphic extension of a typep-
reserving mapping [x1,σ1 := s1, . . . ,xn,σn := sn] with all si terms. Substitutions for meta-applications
Xσ [t1, . . . , tm] “eat” their arguments. Formally, let γ be the function mapping xi,σi to si and γ(xτ) = xτ

for other typed variables. For any metaterm s, sγ is generated by the following rules:
xσ γ = γ(xσ) for x ∈ V
fσ γ = fσ for f ∈F
(s · t)γ = (sγ) · (tγ)

C. Kop 3

(λxσ .s)γ = λxσ .(sγ) if xσ /∈ dom(γ) (we can rename x if necessary)
xσ [s1, . . . ,sn]γ = q[y1 := s1γ, . . . ,ym := smγ] · (sm+1γ) · · ·(smγ)

if γ(x) = λy1 . . .ym.q, m≤ n and m = n or q is not an abstraction.
A metaterm is standard if variables occuring at the head of a meta-application are not bound, and
all free variables occur at the head of a meta-application.

Examples: (x(λy.y)[x := λ z.z(a)]= (λ z.z(a))(λy.y) whereas x[λy.y][x := λ z.z(a)]= (λy.y)(a)).
Even an empty substitution has an effect on a proper metaterm: x[λy.y][] = x(λy.y).

β and η =β is the equivalence relation generated by (λx.s) · t =β s[x := t]. Every metaterm s
is β -equal to a unique β -normal term s ↓β which has no subterms (λx.s) · t. This is a wellknown
result, which is easily extended to HODRSs.

=η is the equivalence relation generated by s = λx.s · x if x /∈ V ar(s), and X [s1 . . . ,sn] =
λx.X [s1, . . . ,sn,x]. A metaterm is in η-normal form if any higher-order subterm is either an ab-
straction or meta-application, occurs at the head of an application or occurs as a direct argument of
a meta-application (for example, X [s] is η-normal if X : σ→τ with τ not composed, and all direct
subterms of s are η-normal). While a term may have more than one η-normal form (f : o→o has
normal forms λx. f (x) and λx.(λx. f (x)) · x), we define s ↓η as its minimal η-normal form.

= βη is the union of these relations. Each term has a unique βη-normal form.

rules A term rewrite system consists of an alphabet F , a set of rules R and an equivalence
relation δ , where δ is one of β , η , βη or normal equality ε (the α rule is implicit in all). Rules are
tuples (l,r) (commonly denoted l⇒ r), where l,r are standard metaterms satisfying the following
properties: 1) l and r have the same type, 2) all variables and type variables in r also occur in l, 3) if
l has a subterm X [s1, . . . ,sn] then the si are all distinct bound variables (the parameter restriction),
4) if the equivalence relation is either β or βη , no subterms X [s1, . . . ,sn] · t0 · · · tm (n,m≥ 0) occur
in l.

R induces a rewrite relation⇒R over terms in minimal δ -normal form:
(top) l′pγ =δ s⇒R t =δ r′pγ if l⇒ r ∈R, p a type substitution

and γ a substitution
(app-l) s · t⇒R s′ · t if s⇒R s′

(app-r) s · t⇒R s · t ′ if t⇒R t ′

(abs) λx.s⇒R λx.s′ if s⇒R s′

The reduction relation is decidable due to the parameter restriction.

3 Pleasant properties and transformations

To prove results about HODRSs it is often convenient to have a bit more to go on than just the
general definition. To this end we define a number of standard properties, which define common
subclasses which are relatively easy to work with.

implicit beta the equivalence relation is either β or βη

4 Transformations of higher-order TRSs

explicit beta the equivalence relation is either η or ε but R contains the rule beta, that is:
(λxα .Z[x]) ·Y ⇒ Z[Y]

parameter-free in all rules, except possibly beta, any meta-applications occuring on either side
have the form X []

beta-free the system is parameter-free, does not contain beta, and its equivalence relation is either
η or ε

monomorphic no rule contains type variables, except possibly beta

left-beta-normal the left-hand side of each rule (except possibly beta) is β -normal

right-beta-normal the right-hand side of each rule is β -normal

beta-normal both left-beta-normal and right-beta-normal

eta-normal both sides of all rules have η-normal form

nth order any variable or function symbol occuring in one of the rules has a type of order at most n.
A sort-headed type b(t1, . . . , tn) has order 0, a type σ1→ . . .σm→b with b not composed has
order max(order(σ1),. . . ,order(σm))+1; we only speak of order in a monomorphic system

finite R is finite

algebraic there are no abstractions in the left-hand side of any rule

abstraction-free there are no abstractions in either side of any rule

left-linear no variable occurs twice free in a term

without head variables no left-hand side contains a subterm X [s1, . . . ,sn] · t
completely without head variables no left-hand side contains a subterm X [s1, . . . ,sn] · t or X · t

(so bound variables may also not occur at a head).

function-headed the head of the left-hand side of each rule is a function symbol

with base rules the type of a rule may not be composed

Many of these properties can be made to hold, by transforming the system. When we are
analysing termination in specific, we can enforce the following properties without affecting either
termination or non-termination of the system:

1. any system can be made monomorphic, although at the price of finiteness

2. any system can be presented in beta-normal form

3. a system with explicit beta can be transformed to have implicit beta

4. any algebraic system can be turned abstraction-free

5. any system has a function-headed equivalent without head variables

Moreover, a system can be turned eta-normal and with base rules without losing non-termination
(we can even assume η to be part of the equivalence relation); if the transformed system is terminat-
ing then so is the original. However, turning a system eta-normal may sometimes lose termination.

C. Kop 5

4 Embedding existing systems

There are four mainstream forms of higher-order rewriting: Nipkow’s HRSs, Jouannaud and Okada’s
AFSs, Yamada’s STTRSs and Klop’s CRSs. The latter three can be embedded into HODRSs, but
since HRSs in general do not have a decidable reduction relation, they can not; for example a rule
f (X(a))⇒ X(b) can not be represented. However, the common restriction to pattern HRSs essen-
tially gives function-headed HODRSs with an equivalence relation βη . An AFS is a parameter-free
system with explicit beta, an STTRS is an abstraction-free, beta-free system, and a CRS can be pre-
sented as a second-order HODRS with equivalence relation ε . Several quirks need to be ironed out
(such as AFSs using function symbols with arity; a symbol f of arity n only occurs in the form
f (s1, . . . ,sn), and CRS terms being untyped), but this is easy to do.

5 HORPO

The recursive path ordering, a common syntactic termination method, has been extended to AFSs
in a long line of research, starting with HORPO [2] and culminating in CPO [1]. Any of these def-
initions can be extended to HODRSs without any real effort; we consider as an example CPO, the
latest version. Given a type ordering on monomorphic types and an ordering on function symbols,
both wellfounded, CPO defines a wellfounded ordering on monomorphic terms by a set of rules.
There is one quirk: in the AFS format used there, function symbols are required to occur with all
their arguments. We counter this by only considering (meta-)terms in eta-normal form; as stated in
section 3 a system is terminating if it is terminating modulo η . As we will see, there is no need to
redo the whole proof that �CPO is wellfounded; we can use the result as it stands.

Choose a wellfounded ordering on all types satisfying the requirements as defined in [1] and
moreover p(σ) > p(τ) if σ > τ; we can for example do this by extending such an ordering on
monomorphic types with the relation σ→ τ > ρ if τ ≥ ρ . Choose a wellfounded ordering on all
retyped function symbols f ′p such that fp(σ) > gp(τ) if fσ > gτ ; we can for example do this by
choosing an initial ordering >′ on the function names, and defining fσ > gτ if f >′ g or f = g
and τ is a strict subtype of σ . Expand the CPO rules with a clause X [s1, . . . ,sn] � X [t1, . . . , tn] if
s1 � t1, . . . ,sn � tn.

Having this, the rules of CPO can be applied to polymorphic metaterms in η-normal form,
and we can prove: if s �CPO′ t, p a type substitution mapping to monomorphic terms and γ a
substitution, then s′pγ ↓η�CPO t ′pγ ↓η and, since beta is included in �CPO, also s′pγ ↓η�CPO
t ′pγ ↓βη . As a system is terminating if and only if there is no infinite reduction over monomorphic
terms, wellfoundedness of⇒R follows if l �CPO′ r for all l⇒ r ∈R.

6 Concluding Remarks

We presented the generalised framework of HODRSs and embedded most of the common for-
malisms in it. The generality of the system does not have to pose a problem for termination re-

6 Transformations of higher-order TRSs

search, since by a number of transformations we can make various convenient assumptions about
any given program. Moreover, if for example a result on AFSs is instead proved on parameter-free
HODRSs, the result immediately holds on a broad subclass of HRSs as well.

We aim to further research the following questions:

1. Under which conditions can we transform a finite polymorphic system to a finite monomor-
phic system with equivalent termination?

2. Can rules with implicit beta be transformed into rules with explicit beta (as these are often
easier to work with)?

3. Which requirements do we need to define dependency pairs?

References
[1] F. Blanqui, J.-P. Jouannaud, and A. Rubio. The computability path ordering: The end of a quest. In

Lecture Notes in Computer Science (CSL ’08), pages 1–14, July 2008.
[2] J.-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In Proceedings of the 14th

annual IEEE Symposium on Logic in Computer Science (LICS ’99), pages 402–411, Trento, Italy, July
1999.

	Introduction
	The formalism
	Pleasant properties and transformations
	Embedding existing systems
	HORPO
	Concluding Remarks

