
EPTCS ??, 20??, pp. 1–16, doi:10.4204/EPTCS.??.??

Transposing Termination Properties in Higher Order
Rewriting

Cynthia Kop
Department of Computer Science

VU University Amsterdam, the Netherlands.
kop@few.vu.nl

In higher order term rewriting, distinguished from first order term rewriting by the presence of bound
variables and often also a type discipline, a plethora of different frameworks is used. Consequently,
proofs of termination properties derived in one framework often have to be redone for others. In this
paper we formulate a generalised framework for higher order rewriting that facilitates an easy trans-
position of termination properties between different frameworks. For the main higher order rewrite
formalisms currently in use, we provide translations to and from this central generalised framework.
These translations preserve the termination property. Care is taken to make this intermediate frame-
work on the one hand general enough, on the other hand simple enough; the one step rewriting
relation is decidable.

1 Introduction

The last few years have seen a rise in the interest in higher order rewriting, especially in the field of
termination. While this area is still far behind its first order counterpart, various techniques for proving
termination have been developed, such as higher order path orderings [5, 2] and dependency pairs [16,
11]. Since 2010 the annual termination competition [17] has a category for higher order termination.

However, a persistent problem is the lack of a fixed standard. There are several important formalisms,
each dealing with the higher order aspect in a different way, along with many variations and restrictions.
Because of the differences in what is and is not allowed, results in one formalism do not trivially, or not
at all, carry over to another. As such it is difficult to reuse results in a slightly different context, which
necessitates a lot of double work. Consider for example the original HORPO, first defined for Algebraic
Functional Systems in [5] and adapted for Pattern HRSs in [15].

This became in particular clear in our endeavour to develop a tool for proving and disproving termi-
nation. The question what sort of formalism to support is essential from the start. Should we choose to
implement a tool for Nipkow’s Pattern HRSs, then we cannot handle a system with a rule λx.Z x⇒ Z,
and the tool would give a false positive on a system with two rules f 0⇒ g (λx.0) and g F ⇒ F (f 0) –
both of which are valid programs in Jouannaud’s Algebraic Functional System formalism. On the other
hand, a tool for AFSs could not handle a system with rules like f (λx.g (F x))⇒ F 0, and would give a
false negative on the system suggested above. And even if we just accept that we cannot support every-
thing, the price for any choice is substantial: for example, the latest version of a recursive path ordering
[2] is only developed for AFSs, while static dependency pairs [11] have only been defined for HRSs.

To improve this situation, we propose to embed all the common forms of (higher order) rewriting
into a general framework. This serves the double goal of facilitating the translation of results from
one formalism to another, as well as providing a basis for termination tools. Rather than choosing one
existing formalism over the others, we will define a new formalism which encompasses all the common
higher order formats with binders. This proposed formalism builds on the common ground of the usual

http://dx.doi.org/10.4204/EPTCS.??.??

2 Transposing Termination Properties

formalisms, includes polymorphism and is not too abstract to obtain real (termination) results, such as
an extension of the Computability Path Ordering [5]. Unlike van Oostrom’s HORSs [14], which have a
comparable goal but are defined on a more abstract level, the formalism stays close enough to common
formalisms to extend non-abstract results.1

Note that our primary aim is not to introduce yet another term rewriting formalism; rather, we show
how programs in the existing formalisms can be transformed and made to follow a general format, so it
is straightforward how to transfer results from one style of rewriting to another.

HODRS AFS

PRSCRS

CS
Sec. 6.4

Sec. 6.3Sec. 6.2

Sec. 6.1

Figure 1. Transformations between higher or-
der formalisms. A heavy arrow indicates a
full embedding from one formalism into an-
other. A dashed arrow indicates a par-
tial embedding. The central HODRS formal-
ism is the new framework defined in this pa-
per.

This paper focusses on termination and thus ignores other interesting topics such as confluence in the
formalism. In addition, Nipkow’s HRSs with unrestricted left-hand sides cannot be represented in the
proposed formalism. This is because for any system containing HRSs it will be hard to obtain strong
results, since the rewrite relation for an HRS in general lacks desirable properties such as decidability of
the one-step rewrite relation. The common restriction to pattern HRSs, however, is covered.

2 Definition

In this section we define our formalism, called Higher Order Decidable Rewrite Systems. They are
polymorphic applicative systems, using meta-variables for matching like in Aczel’s Contraction Schemes
[1], Klop’s Combinatory Reduction Systems [8] and Khasidashvili’s Expression Reduction Systems [7]
(which are very similar to CRSs, but were introduced independently).

Types We assume a set of type constructors B and a set of type variables A . Each type constructor
b has a fixed arity, notation ar(b) = n with n a natural number; at least one has arity 0. A polymorphic
type is an expression over B and A built according to the following grammar:

T = α | b(T n) | T →T (α ∈A , b ∈B, ar(b) = n)

A monomorphic type does not contain type variables. A type of the form σ1→σ2 is functional, and a
type b(σ1, . . . ,σn) is a data type. A type b() with ar(b) = 0 is denoted as just b. Types are written as
σ ,τ,ρ, . . . and type variables as α1,α2, The→ associates to the right.
Example 1. Some example types: nat, nat→bool, list(nat) and (non-monomorphic) α→list(α).
We say σ ≥ τ if τ can be obtained from σ by substituting types for type variables. For example, α ≥
α ≥ α→β ≥ nat→nat, but not α→α ≥ nat→real. A type declaration is an expression of the form
(σ1× . . .×σn)−→ τ with σ1, . . . ,σn,τ ∈T ; such a declaration is said to have arity n. Type declarations
are not types, but are used to type meta-variables. A type declaration ()−→ τ is usually just denoted by
τ . We also use ≥ to compare two type declarations.

1The more abstract level in van Oostrom’s HORSs is given by an underlying substitution calculus which generally speaking
consists of a version of λ -calculus with β -reduction.

C. Kop 3

Terms and Meta-terms A meta-term is an expression s over a set F of typed constants (also known
as function symbols), a set V of variables and a set M of meta-variables, each meta-variable equipped
with an arity n, such that s : σ can be derived for some type σ with the following rules:

(var) xτ : τ if x ∈ V and τ a type
(fun) fτ : τ if fσ ∈F and σ ≥ τ

(abs) λxσ .s : σ→τ if x ∈ V , σ a type and s : τ

(app) s · t : τ if s : σ→τ and t : σ

(meta) Z(σ1×...×σn)→τ(s1, . . . ,sn) : τ if Z ∈M , s1 : σ1, . . . ,sn : σn, Z has arity n

Moreover, both variables and meta-variables must have a unique type (or type declaration) in s – if both
xσ and xτ occur in s (with x ∈ V ∪M) then σ = τ .

A term is a meta-term without meta-variables, so its type is found without clause (meta).
The λxσ .s construct binds the variable x in s. Note that only variables can be bound, not meta-

variables, and there are no binders other than λ . As usual, we work modulo renaming of variables bound
by an abstraction operator (α-conversion). The · operator for application associates to the left. We will
commonly omit the · and just write s t instead of s · t. We also omit empty argument lists in meta-variable
applications, using Z instead of Z(). Write FVar(s) for the set of variables occurring free in s, FMVar(s)
for the set of meta-variables occurring in s and FTVar(s) for the set of type variables occurring in s.

A meta-term is a pattern if it does not contain any subterms Z(s1, . . . ,sn) · t or (λx.s) · t, and in
subterms Z(s1, . . . ,sn) all si are distinct bound variables.

Type Substitution A type substitution is a mapping θ : A → T . For any (meta-)term s let sθ be s
with all type variables α replaced by θ(α). As an example, (ifbool→α→α→α xbool yα 0α){α → nat}=
ifbool→nat→nat→nat xbool ynat 0nat. We say s≥ t if there is a type substitution θ such that s = tθ ; thus,
we have ≥ (“more general than”) both on types and meta-terms.

(Meta-)term Substitution A (meta-term) substitution is the homomorphic extension of a mapping
[x1

σ1
:= s1, . . . ,xn

σn
:= sn], where:

1. each si is a term

2. each xi is either a variable or a meta-variable

3. if xi is a variable, then σi is a type and si : σi

4. if xi is a meta-variable of arity m then σi is a type declaration (τ1× . . .× τm)−→ ρ of arity m and
si = λy1

τ1
. . .ym

τm
.u with u : ρ .

A substitution replaces the variables and meta-variables in its domain everywhere in the meta-term.
When substituting for a meta-variable we additionally perform a development. For example,

(x · (λy.y))[x := λ z.z a] = (λ z.z a)(λy.y) whereas Z(λy.y)[Z := λ z.z a] = (λy.y) a.
Formally, for any meta-term s the result sγ of substituting is generated by the following rules:

xi
σi

γ = si if xi is a variable;
xi

σi
(t1, . . . , tm)γ = u[y1 := t1, . . . ,ym := sm] if xi is a meta-variable and si = λy1 . . .ym.u;

fσ γ = fσ for f ∈F ;
(s · t)γ = (sγ) · (tγ);
(λxσ .s)γ = λxσ .(sγ) if no xτ occurs in domain or range of γ (we can rename x if necessary);
xσ γ = xσ if x a variable and xσ is not one of the xi

σi
(either not x = xi or not σ = σi for all i);

4 Transposing Termination Properties

Zσ (s1, . . . ,sn)γ = Z(s1γ, . . . ,snγ) if Z a meta-variable and Zσ is not one of the xi
σi

.
Note that substitution is well-defined: the step where a meta-term is replaced uses a second substitution,
but this second substitution has no meta-variables in its domain.

Context A context is a meta-term C with a special symbol �σ occurring in it. Write C[s] for the
meta-term C with �σ replaced by s; to avoid losing typability s should have type σ .

Eta The relation of restricted η-expansion, η , is defined as follows: C[s] η C[λxσ .s xσ] if s : σ→τ

and the following conditions are satisfied:

1. x is a fresh variable;

2. s is neither an abstraction λx.s′ nor a meta-variable application Z(s1, . . . ,sn)

3. s in C[s] is not the left part of an application;

4. s in C[s] is not the direct argument of a meta-variable application.

By parts 3 and 4 s is not expanded if it occurs in a sub-meta-term of the form s u or Zτ(. . . ,s, . . .);
requirements 2 and 3 guarantee that η always terminates. Therefore every term s has a unique η-long
form s↑η which can be found by applying η until it is no longer possible. We say a term s is in η-long
form or has η-long form if s = s↑η .

Example 2. Some examples: Z(o×(o→o))−→a→b(0o,go→o)↑η = Z(o×(o→o))−→a→b(0o,go→o).
(λx. fnat→nat→nat xnat) 0 0↑η = (λxy. fnat→nat→nat xnat ynat) 0 0.

Rule Schemes and Rules A rule scheme is a pair l⇒ r of meta-terms such that

1. l and r have the same type,

2. all meta-variables and type variables occurring in r also occur in l,

3. l and r are closed,

4. l is a pattern,

5. r has no subterms (λx.s) t and

6. l has the form f l1 · · · ln with f ∈F and n≥ 0.

A rule scheme is a rule if it is monomorphic (where a pair of meta-terms is called monomorphic if all
types occurring in it are). A set of rule schemes R may yield a set of rules R in one of two ways. The
standard set of rules RR generated from R is the set of rules lθ ⇒ rθ with l ⇒ r ∈ R and θ a type
substitution with domain FTVar(l) and only monomorphic types occurring in its range. The η-long set
of rules Rη

R generated from R is the set of rules l Z1
σ1
· · ·Zn

σn
↑η ⇒ r Z1

σ1
· · ·Zn

σn
↑η where l⇒ r is in RR,

l : σ1→ . . .→σn→τ with τ a sort and Z1, . . . ,Zn fresh meta-variables. Note that neither applying a type
substitution nor η-normalising affects properties (1-6).

Although the rewrite relation is defined using a set of rules rather than rule schemes, it has merit to
keep in mind the rule schemes which generated R, since in polymorphic systems sets of rule schemes
are often finite while the rules generated from them are not. Since every rule is also a rule scheme, we
can always assume a set of rules was generated in one of the above two ways.

C. Kop 5

Rewrite Relation A set of rules R generates a rewrite relation on monomorphic terms as follows:

(top) lγ ⇒R rγ if l⇒ r ∈R and γ a substitution (∗∗)
(app-l) s t⇒R s′ t if s⇒R s′

(app-r) s t⇒R s t ′ if t⇒R t ′

(lambda) λx.s⇒R λx.s′ if s⇒R s′

(beta) (λx.s) t⇒R s[x := t]

(**) Since the rewrite relation is on terms, the domain of γ must contain all meta-variables in l.
The reduction relation is decidable due to the pattern restriction. We say s⇒β t if s⇒R t can be derived
without clause (top) (so the base part is done with (beta)). It is well-known that ⇒β on itself is
terminating and has unique normal forms; write s↓β for the β -normal form of s.

In addition, we could define a reduction strategy and investigate termination (and other properties)
adopting this strategy; common reduction strategies are, for example, innermost (s⇒R,innermost t if either
s⇒R,top t and the direct subterms of s cannot⇒R-reduce, or a direct subterm of s reduces innermost),
outermost (s⇒R,outermost t if either s⇒R,top t or s is not a redex and one of its direct subterms reduces
outermost) and beta-first (s⇒R,beta−first t if either s⇒β t or s⇒R t and s is beta-normal).

Requirements (4-6) may be puzzling at first sight, since by placing restrictions on the rules the
definition of the system becomes more complicated. However, by disallowing problematic rules like
Z 0⇒ (λx. f (x)) · 1 it becomes much easier to obtain interesting results, and (as we will see briefly in
Section 6.4) we do not truly lose expressivity by placing these limitations.

Example 3. The example system map has signature

F = {nillist(α), consα→list(α)→list(α), map(α→α)→list(α)→list(α)}

and rules generated in a standard way by the set of rule schemes (taking σ := (α→α)→list(α)→
list(α) and τ := α→list(α)→list(α))

R =

{
mapσ F nillist(α) ⇒ nillist(α)

mapσ F (consτ H T) ⇒ consτ (F H) (mapσ F T)

}
We will commonly omit explicit type specification and just assume the most general possible type is
used. This way, the second rule becomes: map F (cons H T)⇒ cons (F H) (map F T).

Extending the signature with symbols O : nat and s : nat→nat we may define a term map (λx.s x)
(cons O (cons (s O) nil)) (here, map has a type (nat→nat)→list(nat)→list(nat)), which we
can reduce as follows:

map (λx.s x) cons O (cons (s O) nil)) ⇒R

cons ((λx.s x) O) (map (λx.s x) (cons (s O) nil)) ⇒R

cons ((λx.s x) O) (cons ((λx.s x) (s O)) (map (λx.s x) nil)) ⇒β

cons ((λx.s x) O) (cons (s (s O)) (map (λx.s x) nil)) ⇒R

cons ((λx.s x) O) (cons (s (s O)) nil) ⇒β

cons (s O) (cons (s (s O)) nil)

3 Functional Syntax

First-order term rewriting systems are usually written using functional syntax, where every function sym-
bol comes equipped with an arity expressing the number of arguments it takes, for example add(x,0)⇒ x.

6 Transposing Termination Properties

There are also so-called applicative systems, with a special binary symbol for application and a signa-
ture containing function symbols that do not get arguments. The paradigmatic example is Combinatory
Logic, with for instance the rewrite rule Sxyz⇒ (xz)(yz). However, t is well-known that going from a
functional TRS to its applicative variant, or the other way round, may have consequences for properties
such as termination. One of the reasons is that in the applicative variant of a functional system there are
more terms. For example, the applicative variant of the example for addition also has add 0 as a term, as
well as add 0 0 0. Neither of these correspond to a term in the functional syntax. See also [3] and [6].

In several higher order formalisms (as we will see in Section 6) terms are functional as well. In our
setting this is not the case: all partial applications are allowed. To deal with functional systems we could
go two ways: either equip function symbols with a type declaration rather than a type, as is done in
[5], or impose an external arity restriction on terms. We have chosen for the second approach because a
functional approach complicates the system unnecessarily, especially in view of Theorem 1.

Definition 1 (Arity). Given a set of function symbols F , an arity function ar assigns to each fσ1→...→σn→τ ∈
F a number m ≤ n (where τ is a base type or type variable). A meta-term s respects ar if any subterm
fτ occurs in a context fτ s1 · · ·sn in s with n≥ ar(f).

Obviously in a meta-term which respects ar we can write f (s1, . . . ,sn) instead of f s1 · · ·sn without
problems. Respecting ar is closed under type substitution.

Theorem 1. Let ar be an arity function for F and R a set of rules over F . If all left- and right-hand
sides of R respect ar then s⇒R t implies that t respects ar if s does, and ⇒R is terminating iff it is
terminating on terms which respect ar.

Note that if rule schemes R respect ar, then so does RR, and an η-long set of rules respects any arity.

Proof. One direction is obvious. For the other, let res be the homomorphic extension of the func-
tion res(f s1 · · ·sn) = λxn+1 . . .xar(f). f res(s1) · · ·res(sn) xn+1 · · ·xar(f). For patterns l which respect ar,
meta-terms r and substitutions γ we have res(lγ) = lγres and res(r)γres⇒∗

β
res(rγ) (where γres = {x 7→

res(γ(x))|x ∈ dom(γ)}). Therefore s⇒R t implies res(s)⇒+
R res(t).

The requirement that the rules should respect ar is essential: for example, the rule g fnat→nat ⇒
g fnat→nat yields an infinite rewrite sequence, but is terminating when we restrict attention to those terms
which respect an arity function ar(fnat→nat) = 1. The reason is that g f does not match terms of the
form g (λx. f x). Of course, it is not very natural to impose a restriction on the term formation which is
not satisfied by the rewrite rules. As long as the left-hand sides of all rewrite rules respect ar we can,
however, translate the rules to respect ar (using the res function from the proof of Theorem 1) without
losing non-termination. Termination is lost in systems with rules like fo→o Zo⇒ g(o→o)→o fo→o.

4 Eta-normality

Another common restriction in the literature is to look only at η-long terms. This is convenient for many
reasons; for example, if a higher-order term g is just the same as λx.g x we only have to consider terms
of base type for non-termination. In fact, if the rules are η-long we are free to make this restriction:

Theorem 2. If R is η-long, then R maps η-long terms to η-long terms and s⇒R t implies s ↑η⇒+
R

· ⇒∗
β

t ↑η . Therefore⇒R is terminating if and only if it is terminating on η-long terms.

Proof. Writing γ↑ = {x 7→ γ(x) ↑η |x ∈ dom(γ)} this primarily holds because lγ ↑η= lγ↑ and rγ↑ ⇒∗
β

rγ ↑η when l,r are η-long meta-terms and l is a pattern; induction on⇒R completes the proof.

C. Kop 7

However, if R is not η-long we cannot just transform it to an η-long version without losing out; the
counterexample from Section 3, fo→o Z⇒ g(o→o)→o fo→o, still applies: this system is terminating, but its
η-long version is not. On the positive side, however, turning the rules η-long can only lose termination,
not non-termination.

Theorem 3. Given a set of rule schemes R. If s⇒RR t then s↑η ⇒Rη

R
t ↑η , so termination of the rewrite

relation for Rη

R implies termination of RR.

Note that given a set of rules R we can just take R := R to apply this Theorem.

Proof. This holds because always s↑ηγ↑⇒∗
β

sγ ↑η and when s is a pattern even s↑ηγ↑ = s↑η .

Thus, we can apply termination techniques on the η-long form of the rules, and if they succeed, we
have also proved termination of the original system. However, since there are systems which cannot
be handled that way, there is merit in also developing techniques which are not preserved under η-
normalisation. Despite this, terms and rules being η-long is an assumption we can usually make without
losing too much.

5 Beta-normality

Another pleasant assumption to work with is having no beta-redexes in your terms. Unfortunately, beta-
reduction makes an essential difference to termination. Consider for example the system with two rules:

f 0 ⇒ g (λxnat→nat.ynatx y)
g (λxy.Z(x,y)) ⇒ Z(λynat.0, f 0)

It is not hard to see that this system is non-terminating. However, if terms are β -normalised after applying
each rule, there is no infinite reduction. It gets worse, however. Consider the following system:

f1 x ⇒ f2 x x
f2 a x ⇒ f3 x

g1 (λy. f3 Z(y)) ⇒ Z(hide (λy. f3 Z(y)))
unhide (hide (λy.Z(y))) ⇒ g2 (λy.Z(y))

g2 (λy. f3 Z(y)) ⇒ g1 (λy. f1 Z(y))

This (admittedly highly artificial) system is β -closed, that is, it has the property that if s is β -normal and
s⇒R t, then also t is β -normal. Yet non-termination is caused by the possibility of non-β -normal terms.
Let χ[y] := (λx.a) (unhide y). Then:

g1 (λy. f1 χ[y]) ⇒R g1 (λy. f2 χ[y] χ[y])
⇒β g1 (λy. f2 a χ[y]) ⇒R g1 (λy. f3 χ[y])
⇒R χ[hide (λy. f3 χ[y])] = (λx.a) (unhide (hide (λy. f3 χ[y])))
⇒R (λx.a) (g2 (λy. f3 χ[y])) ⇒R (λx.a) (g1 (λy. f1 χ[y]))

The crux of the example is that due to β -reduction there is a term that reduces to a but also has a subterm
unhide y; no counterpart on β -normal terms exists.

When we are only interested in β -normal terms, we can either restrict termination analysis to this
subset of terms, or (especially if⇒R is not β -closed) use a beta-first reduction strategy.

8 Transposing Termination Properties

Theorem 4. LetA be the relation with sA t iff s is β -normal, there is t ′ with s⇒R t ′ and t = t ′ ↓β . Then
A is terminating if and only if⇒R,beta−first is.

Restricting interest to β -normal terms is not just useful for studying termination under a strategy, or
for a limited subset of terms. In fact, for any system which satisfies a number of (not too unreasonable)
requirements, β -normal termination is all we need. Say a meta-term is fully extended if in every meta-
application all bound variables occur as arguments (so λx. f Z(x) is fully extended whereas λxy. f Z(x)
is not); a set of rules is considered fully extended if all left-hand sides are. Say a meta-term is simple
functional if it is β -normal and has no subterms x s with x ∈ V or Z(~t) s with Z ∈M ; a set of rules is
simple functional if both sides of all rules are. A set of rules is second-order if all meta-variables occur
with a type (b1× . . .×bn)→bn+1→ . . .→bm→bm+1 with all bi data types.

Theorem 5. Suppose R is left-linear, fully extended, second-order, η-long and simple functional. For
every pair of type constructors a,b ∈ B with ar(a) = n,ar(b) = m introduce a new function symbol
Pa,b : a(α1, . . . ,αn)→b(βn+1, . . . ,βn+m)→a(α1, . . . ,αn) and let RP = R ∪{Pa,b X Y ⇒ X |a,b ∈B}.
Then RP maps simple functional terms to simple functional terms, and R is terminating if and only if
RP is terminating on simple functional terms.

Proof. In a left-linear, fully extended set of rules we can typically avoid steps inside an application other
than functional applications f s1 · · ·sn. Realising that, and only considering η-long terms, we can replace
terms (λx.s) (λ~y.t) r1 · · ·rn by P (s[x := λ~y.t]~r) t, and reductions go through unhampered.

Of course, not all systems satisfy the requirements of Theorem 5. However, with some transforma-
tions we can in principle assume a beta-first reduction strategy for all (standard) HODRSs:
Let F be a set of function symbols, R a set of rule schemes and let @(α1→α2)→α1→α2 be a fresh function
symbol. Write the rule schemes in R in a functional form, respecting maximal arity. Let A(s) be s with all
applications u v replaced by @(u,v) – note, here, that function applications f (s1, . . . ,sn) are not directly
affected. Let RA = {A(l)⇒ A(r)|l⇒ r ∈ R}∪{@(X ,Y)⇒ X Y}.

Theorem 6. ⇒RR is terminating if and only if ⇒RRA is terminating, if and only if ⇒RRA ,beta−first is
terminating.

Proof. It is not hard to show that always A(sγ) = A(s)γA (where γA = {x 7→ A(γ(x))|x ∈ dom(γ)}) and
therefore s⇒R t implies A(s)⇒RRA · ⇒=

β
A(t), which is a⇒RRA ,beta−first reduction because A(s) is β -

normal. On the other hand, if s⇒RRA t then A−1(s)⇒∗R A−1(t) (where A−1 just replaces all @(u,v) by
u v), with equality only possible if it was an @(s, t)⇒R s t step).

In many realistic examples, RA will actually be the same as R but with a single extra rule scheme
– unfortunately a polymorphic rule scheme that generates infinitely many rules. Only when meta-
variables have a functional output type, such as in a rule map F (cons H T)⇒ cons (F H) (map F T),
does this transformation really make the system more difficult to use (the right hand side becomes
cons (@ F H) (map F T)). There are ways around this, but we do not discuss these here.

6 Transforming Existing Formalisms

We will now discuss the formalisms most commonly used in the context of higher order rewriting, and
demonstrate how they can be embedded into the HODRS format and (sometimes) vice versa.

C. Kop 9

6.1 Contraction Schemes

The first formalism for defining general higher order rewriting was Aczel’s Contraction Schemes (CSs) [1].
While no typing occurs in the definition, it fits quite well into our own formalism – it is merely restricted
to second order, simple functional terms.

Definition Terms in a Contraction Scheme are built from an infinite set of variables, and a signature
Σ of forms f : [k1, . . . ,kn] (with all ki ∈ N), according to the following clauses: (1) a variable is a term,
(2) if f : [k1, . . . ,kn] ∈ Σ and s1, . . . ,sn are terms, then also f (λx1,1, . . . ,x1,k1 .s1, . . . ,λxn,1, . . . ,xn,kn .sn) is
a term. Meta-terms use in addition to variables and forms also meta-variables, each with a fixed arity.
Meta-terms are built using the clauses for terms together with (3) if Z is an n-ary meta-variable and
s1, . . . ,sn are meta-terms, then Z(s1, . . . ,sn) is a meta-term. A rewrite rule is a pair l⇒ r of meta-terms
such that all meta-variables in r also occur in l. In addition, the left-hand side l of a rule must satisfy the
following restrictions: (i) l is closed (that is, all variables occur in the scope of a λ), (ii) l is linear, that is,
every meta-variable occurs at most once in l, (iii) l is fully extended, (iv) l has a depth of 1 or 2 (where
Z(~x) has depth 0 and f (λ~x1.s1, . . . ,λ~xn.sn) has depth max({depth(si) |1≤ i≤ n})+1).

The rewrite relation over a set of rewrite rules R is given by: (1) f (λ~x1.s1, . . . ,λ~xi.si, . . . ,λ~xn.sn) ↪→R

f (λ~x1.s1, . . . ,λ~xi.s′i, . . . ,λ~xn.sn) if si ↪→R s′i, and (2) lγ ↪→R rγ if l⇒ r ∈ R and γ is a meta-substitution,
that is, a construct [Z1 := (~x1)a1, . . . ,Zn := (~xn)an] containing all meta-variables occurring in l; applying
γ on a meta-term s replaces all occurrences of Zi(s1, . . . ,sm) by ai[xi,1 := s1, . . . ,xi,m := sm].

Example 4. We could represent map from Example 3 as the following Contraction Scheme:

Σ = {nil : [], cons : [0,0], map : [1,0]}

R =

{
map(λx.F(x),nil)⇒ nil,
map(λx.F(x),cons(H,T))⇒ cons(F(H),map(λx.F(x),T))

}

Transformation from CS to HODRS We explain how a Contraction Scheme (Σ,R) can be trans-
formed into a HODRS (F ,R). Let o be a 0-ary type constructor and write σn for the type o→. . .→o→o
with in total n arrows (so n+1 occurrences of o), and τn for the type declaration (o× . . .×o)−→ o (also
n+1 occurrences of o). A form f : [k1, . . . ,kn] in Σ is translated into a function symbol fσk1→...→σkn→o in
F . The translation φ from CS-style meta-terms to HODRS-style meta-terms is defined as follows:

φ(x) = xo(x ∈ V)
φ(f (λ~x1.s1, . . . ,λ~xn.sn)) = fσk1→...→σkn→o (λ~x1.φ(s1)) · · ·(λ~xn.φ(sn))

φ(Z(s1, . . . ,sn)) = Zτn(φ(s1), . . . ,φ(sn))

For the translation of rewrite rules, we first observe that in a CS the right-hand side may contain free
variables. To solve this we add a fresh constant v with arity [] to Σ and replace all free variables in all
right-hand sides by v. Since v does not occur in any left-hand side and contraction schemes are left-linear
this has no significant influence on the rewrite relation (and does not affect termination).

Having done this, we can simply take R = {φ(l)⇒ φ(r)|l ⇒ r ∈ R}. The resulting HODRS is a
left-linear, fully extended, second-order, η-long, and simple functional HODRS with only one base type.

The resulting reduction relation ⇒R reduces simple functional terms to simple functional terms
again, and ↪→R is terminating if and only if ⇒R is terminating on simple functional terms, which is
certainly the case if it is terminating on β -normal terms, if and only if⇒R,beta−first is terminating. If Σ

contains at least one symbol which takes two or more arguments, this is even an equivalence.

10 Transposing Termination Properties

Transformation from HODRS to CS Following Theorem 5 a given left-linear, fully extended second
order η-long and simple functional HODRS which satisfies requirement (iv) and has only one base type is
terminating if and only if the corresponding CS with a single additional rule P(X ,Y)⇒ X is terminating.
Termination results can be transferred to systems which under collapsing of sorts into the single sort o
satisfy these requirements (but non-termination results cannot, as collapsing might lose termination).

6.2 Combinatory Reduction Systems

Contraction Schemes were generalised in 1980 by Klop to Combinatory Reduction Systems [8]. These
CRSs, further investigated in [9], are still popular today. However, as CRSs drop restrictions on terms
as well as on rules, the terms admitted in a CRS will in general not be typable. This untyped nature
makes them less interesting from a termination point of view (as most usual examples of CRSs will not
be terminating). Nevertheless, there is an embedding into the HODRS formalism.

Definition In a CRS, a term is built from an infinite set of variables and a signature Σ of function
symbols, each with a fixed arity n ∈ N, by the following rules: (1) all variables are terms, (2) if s is a
term, then so is λx.s, (3) if f : n ∈ Σ and s1, . . . ,sn are terms, then f (s1, . . . ,sn) is a term. Meta-terms
are defined by these three clauses and additionally: (4) if Z is a meta-variable of arity n, and s1, . . . ,sn

are meta-terms, then Z(s1, . . . ,sn) is a meta-term. Rules are pairs l⇒ r of closed meta-terms, where in
subterms Z(s1, . . . ,sn) all si are bound variables. The rewrite relation is given by: lγ ↪→R rγ if l⇒ r ∈ R
and γ a substitution whose domain consists of the meta-variables in l, λx.s ↪→R λx.s′ if s ↪→R s′ and
f (s1, . . . ,si, . . . ,sn) ↪→R f (s1, . . . ,s′i, . . . ,sn) if si ↪→R s′i. The primary difference with the schemes from
Section 6.1 is the admission of abstractions as valid terms, and since terms are untyped, it is this which
causes difficulty.

Example 5. We could represent map as the system with

Σ = {nil : 0, cons : 2, map : 2}

R =

{
map(λx.F(x),nil)⇒ nil,
map(λx.F(x),cons(H,T))⇒ cons(F(H),map(λx.F(x),T))

}
This system is non-terminating: abbreviating ω := λx.map(x,cons(x,nil)) and Ω := map(ω,cons(ω,nil))
we have Ω ↪→R cons(Ω,map(ω,nil)).

Transformation from CRS to HODRS We cannot transform a term in the obvious way, because both
f (0) and f (λx.0) are valid terms – not both can be typable. Therefore we introduce a special symbol T
to “flatten” abstractions. Let F = {T(o→o)→o}∪{ fσn | f : n ∈ Σ} (here σn is again the type o→ . . .→o→o
with in total n+ 1 occurrences of o). Let φ be the function mapping CRS-style (meta-)terms to our
(meta-)terms as follows:

φ(x) = xo (x ∈ V)
φ(f (s1, . . . ,sn)) = f φ(s1) · · ·φ(sn)
φ(λx.s) = T (λx.φ(s))
φ(Z(s1, . . . ,sn)) = Zτn(φ(s1), . . . ,φ(sn))

Defining R := {φ(l)⇒ φ(r)|l⇒ r ∈ R} it is easily seen that⇒R is β -closed and ↪→R is terminating if
⇒R is terminating on β -normal terms; if Σ has any symbol of arity 2 or more this is an equivalence.

C. Kop 11

Note In the original definition of CRSs [8] function symbols did not have an arity; instead, terms used
an applicative format. This is not comparable to the version of application used in HODRSs: by the lack
of typing terms could be f , f x1, f x1 x2, . . . We can deal with this by introducing a symbol apply of arity
2 which encodes application (so these terms become f , apply(f ,x) and apply(apply(f ,x1),x2),. . .).

6.3 Pattern Higher-order Rewrite Systems

Higher Order Rewrite Systems, which are rewrite relations on typed terms modulo β -and η-equality,
were first introduced in [13]. Following Wolfram [18] the restrictions on the rules were dropped in [12]
for studying further properties. However, the unrestricted system admits many rules which are hard to
reason about, as in general the rewrite relation will not be decidable; contrary to our aims, any formalism
which includes HRSs in their totality would be hard to obtain immediate results on, other than on a very
abstract level. Therefore we instead look at pattern HRSs, which pose a restriction on the rules that
corresponds with the restriction in the original definition of HRSs. Pattern HRSs (PRSs) form a very
common and natural class, with many interesting results of their own (such as those discussed in [12]).

Definition A PRS is defined as a rewrite relation on higher order terms in long β/η-normal form, that
is, terms in η-long form which do not have subterms of the form (λx.s) · t; every term s has a unique
long β/η-normal form s lη

β
. A rewrite rule is a pair l⇒ r of (monomorphic) base-type terms, such that

FVar(r) ⊆ FVar(l) and l is a pattern; that is, every free occurrence of a variable F in l is in a base type
subterm F x1 · · ·xn with all xi distinct bound variables. The rules generate the relation ↪→R as follows:
s ↪→R t lη

β
if s↪→Rt can be derived with clauses (app-l), (app-r), (lambda) and additionally:

(top-hrs) lγ lη

β
↪→Rrγ lη

β
for l⇒ r ∈R and γ a substitution.

Example 6. The standard system map can be implemented as follows:

Σ = {nil : list, cons : nat→list→list, map : (nat→nat)→list→list}

R =

{
map (λx.F x) nil⇒ nil,
map (λx.F x) (cons H T)⇒ cons (F H) (map (λx.Fx) T)

}
Note that we have assumed a fixed type nat in place of the type variable α in Example 3; to deal with
such polymorphism we would have to introduce infinitely many similar rules.

Transformation from HRS to HODRS The rules transform naturally to our format; just replace sub-
terms F s1 · · ·sn with F a free variable in either side of the rules by F ′(s1, . . . ,sn) (where F ′ is a meta-
variable typed correspondingly). The requirements on the left-hand sides of the rules are satisfied by the
pattern restriction. Thus we define R in a natural way. Although HRS-terms are more restrictive than
HODRS-terms, Theorem 2 allows us to assume terms are η-long. β -normality can be handled with a
reduction strategy as discussed in Section 5. We see: ↪→R is terminating if and only if⇒R,beta−first is.

Transformation from HODRS to HRS Termination of an η-long HODRS using a beta-first reduction
strategy is equivalent with termination of the corresponding HRS (where meta-variable applications are
expanded, so for example map F nil becomes map (λx.F(x)) nil). Note also Theorems 3 and 6 which
can be used to transform a system without strategy into an HRS.

12 Transposing Termination Properties

6.4 Algebraic Functional Systems

Jouannaud’s and Okada’s Algebraic Functional Systems, as defined in [4], are in syntax quite close to
functional programs in various languages. AFSs are polymorphic systems with β -reduction as a separate
step. There are several variations of the original format in the literature, especially with respect to the
form of polymorphism used. We follow the definition in [5], which is not restrictive in the terms it allows
and uses the same definition of polymorphism as we do.

Definition Terms in an AFS are defined in a functional way: instead of a type, function symbols f
come equipped with a type declaration. Terms are built with clauses (var), (abs), (app) and the
altered clause

(func) f(σ1×...×σn)−→τ(s1, . . . ,sn) : τ if fρ ∈F and ρ ≥ (σ1× . . .×σn)−→ τ

A rule is simply a pair of (polymorphic) terms l⇒ r such that l and r have the same type and all variables
and type variables occurring in r also occur in l; ↪→R is the smallest monomorphic relation such that
lθγ ↪→R rθγ for all l⇒ r ∈ R, type substitutions θ and substitutions γ , and (λx.s) t ↪→R s[x := t].

Example 7. The standard map example is much like Example 3, with

Σ = {nillist(α), consα→list(α)→list(α), map(α→α)→list(α)→list(α)}

and set of rules (taking σ := (α→α)→list(α)→list(α) and τ := α→list(α)→list(α)):

R =

{
mapσ F nillist(α)⇒ nillist(α),

mapσ F (consτ H T)⇒ consτ (F H) (mapσ F T)

}

Transformation from AFS to HODRS For those AFSs where the rules are in β -normal form and do
not have head-variables (which is the case for the vast majority of examples used in the literature on
AFSs, for example in those systems originating from functional programs), we can simply replace the
variables in the rules by meta-variables of the same type, and replace f (s1, . . . ,sn) by f s1 · · ·sn; this gives
a set of rule schemes R′, and by Theorem 1 the HODRS with rules RR′ is terminating if and only if the
original AFS is. If the rules do not satisfy these restrictions, we modify them first, by making application
explicit (comparable to what was done in Theorem 6). We use the following transformation:

• Let S = {σ |∃l⇒ r ∈ R[l has a subterm xσ u with x∈ FVar(l) or either l or r has a subterm (λx.u) v
and λx.u : σ]}.

• For every rule with a subterm u v with u : τ such that τ unifies with some type σ ∈ S, but not σ ≥ τ ,
add a rule lθ ⇒ rθ , where θ is the smallest type substitution that unifies τ with σ . Continue doing
this until no new rules are added (this process is finite if S is, otherwise it has a limit).

• For σ→τ ∈ S, introduce new function symbols @σ ,τ
(σ→τ×σ)−→τ

.

• In all rules l⇒ r, replace in either side occurrences u v by @σ ,τ(u,v) if u : ρ and S 3 σ→τ ≥ ρ .
In addition, add rules @σ ,τ(X ,Y)⇒ X Y for all σ→τ ∈ S.

This means we replace applications by an explicit function symbol, but only for those types where it is
necessary. Note that in a monomorphic AFS, the second step can be skipped.

C. Kop 13

Transformation from HODRS to AFS Every HODRS with rules RR (generated from rule schemes
R) where all meta-variables have arity 0 (parameter-free HODRS) is the translation of an AFS (usually
of more than one), and thus its termination can be analysed with AFS-techniques. Typically, we would
analyse the AFS corresponding to a maximal arity function.

Remarks HODRSs originating from HRSs or contraction schemes will usually not be parameter-free;
for example, the HRS for map leads to a rule map (λx.F(x)) nil. However, as long as meta-variables
only occur in the form λ~x.Z(~x) the system can be handled by the following transformation:
(Transformation) For every meta-variable Z(σ1×...×σn)−→τ occurring in a set of rule schemes R, let
Z′σ1→...→σn→τ be a meta-variable of arity 0. In every rule scheme, replace λ~x.Z(~x) on the left by Z′ and
replace Z(s1, . . . ,sn) on the right by Z′ s1 · · ·sn.

Theorem 7. Let R be a set of rule schemes such that meta-variables in the left hand sides only occur in
the form λ~x.Z(~x), and R′ the system transformed as above. If s⇒RR t then s⇒RR′ · ⇒

∗
β

t, so if⇒RR′ is
terminating then so is⇒RR; moreover,⇒RR,beta−first is terminating if and only if⇒RR′ ,beta−first is.

6.5 Applicative Systems

Another style of higher order rewriting systems is applicative rewriting. In this style there are usually
types and functional variables, but no abstractions or other kinds of variable binders. We discuss some
of the many variations of applicative rewriting here.

STTRS Yamada’s Simply Typed Term Rewriting Systems [19] use a version of typing and application
rather different from ours: a type can either be a fixed base type or has the form (σ1× . . .×σn)→σ0
with n > 0, σ0, . . . ,σn types. Thus, we may have types like (σ1×σ2)→ (τ1× τ2)→ρ . Given a set Σ of
typed constants and a set V of typed variables, terms are expressions typable by the following rules: (1)
a : σ if aσ ∈ Σ∪V , (2) if s0 : (σ1× . . .×σn)→σ0, and s1 : σ1, . . . ,sn : σn, then (s0 · s1 · · ·sn) : σ0, then
(s0 · s1 · · ·sn) : σ0 (n > 0). A rule is just a pair of terms l⇒ r ∈ R of the same type, such that all variables
in r also occur in l, and l has the form (f · s1 · · ·sn) with f(σ1×...×σn)→σ0 ∈ Σ. The rewrite relation ↪→R is
the smallest monotonic relation such that lγ ↪→R rγ for all l⇒ r ∈ R and substitutions γ .

Example 8. map could be implemented as follows:

Σ = {nil : list, cons : (nat×list)→list, map : ((nat→nat)×list)→list}

R =

{
map F nil⇒ nil,
map F (cons H T)⇒ cons (F H) (map F T)

}
Note that the F in either map rule cannot be instantiated by an abstraction, however, as abstractions are
not present in STTRSs.

Example 9. The system with Σ = {g : (o×o)→o→o} and R = {g X⇒ X} is terminating as an STTRS,
even though the corresponding system as a HODRS leads to non-termination.

TRShv Kusakari’s Term Rewriting Systems with Higher-Order Variables [10] are untyped systems.
Terms are built from a countably enumerable set of variables V and a finite set of function symbols
Σ, according to the rule that a(s1, . . . ,sn) is a term if a ∈ V ∪ Σ and s1, . . . ,sn are terms. Applying a
substitution γ with γ(a)= b(t1, . . . , tm) for a in a(s1, . . . ,sn) gives b(t1, . . . , tm,s1γ, . . . ,snγ), so this behaves
like the application we are used to. Reductions can be done at the top of a term, or in some of the si in
a(s1, . . . ,sn). It is not possible to directly reduce a(s1, . . . ,sk) in a(s1, . . . ,sn) (with k < n).

14 Transposing Termination Properties

Example 10. map in a TRShv would be implemented as follows:

Σ = {map, cons, nil}

R =

{
map(F,nil)⇒ nil,
map(F,cons(H,T))⇒ cons(F(H),map(F,T))

}

STRS Kusakari’s Simply-typed Term Rewriting Systems extend TRShvs by attaching a simple type to
all function symbols (where a simple type is either a base type or σ→τ with both σ and τ simple types)
and requiring terms to be typable by the usual requirements.

Later extensions also include a product type σ1× . . .×σn, and a tuple symbol. In our terminology,
STRSs come equipped with an enumerable number of type constructors prodn (of arity n, for n∈N), and
an enumerable number of tuple symbols tun : prodn(α1, . . . ,αn) with α1, . . . ,αn type variables.

Remarks We have presented some of these applicative systems, but will not provide an embedding into
the HODRS formalism. While it is possible to define a translation (and after removing head variables in
the right-hand sides the transformation would likely not be too complicated), there is arguably little merit
in doing so. Because the HODRS format is significantly more free than the ones in this section (mostly
due to the presence of β -reduction), it is likely that far stronger results can be obtained by studying
applicative systems directly, or otherwise their embedding into a general applicative system or even into
first-order term rewriting.

7 A Higher Order Recursive Path Ordering

The recursive path ordering, a common syntactic termination method, has been extended to AFSs in a
long line of research, starting with HORPO [5] and culminating in CPO [2]. Any of these definitions can
be extended to HODRSs; we consider as an example HORPO, the first version. Given a well-founded
ordering on function symbols, HORPO defines a well-founded ordering on terms with polymorphic
simple types.

It is important to realise that HORPO is nothing more or less than an ordering on terms – and terms in
the format of [5] are also terms in our formalism, if we write them using applicative notation. Therefore
we can use the result as it stands, without any need to redo the well-foundedness proof.

Formally, we need a minor transformation, as the formalism presented in this paper is more free in the
types it allows. For any type σ , let collapse(σ) be the type σ with all subtypes of the form b(σ1, . . . ,σn)
replaced by the single data type o (for example, collapse(a→ b(α)→α) = o→ o→α if α is a type
variable). Given a set of rule schemes R respecting the arity function ar, let φ(s) be s with all types
occurring in it collapsed, and written in functional notation.

Theorem 8. Let R = RR be a set of rules generated from R. Then⇒R is terminating if φ(l) >∗ φ(r)
can be proved for all rule schemes l⇒ r ∈ R with the rules of HORPO and in addition: s ≥ t if one of
the following holds: (1) s > t, (2) s = t, (3) s = Z(s1, . . . ,sn) and t = Z(t1, . . . , tn) and all si ≥ ti, (4) s =
f (s1, . . . ,sn), t = f (t1, . . . , tn) and all si ≥ ti, (5) s = s1 s2, t = t1 t2 and each si ≥ ti, (6) s = λx.u, t = λx.v
and u≥ v.

Proof. It is easy to see with induction over the definition of HORPO that this extension corresponds
with the original definition (which only has rules (1) and (2) for ≥) when comparing terms. It is also
not hard to derive that thes extension is closed under both type and term substitution. Therefore, writing

C. Kop 15

� for the extended version of the HORPO relation, φ(l) �+ φ(r) implies φ(lθγ) = φ(l)θ collapseγφ >
φ(r)θ collapseγφ = φ(rθγ). Therefore any infinite RR reduction leads to an infinite decreasing >HORPO

reduction, contradicting well-foundedness of the latter.

Later versions of HORPO introduce a type ordering and a stronger relation on the terms. Unfortu-
nately, the last version (CPO, as defined in [2]) uses a variation of typing where function symbols are
required to have a data type as output type. Therefore we can not use this relation directly to order poly-
morphic rule schemes (at least, not when a function symbol in any rule has a type variable as output type,
such as a rule ifbool→α→α true X Y ⇒ X). Interpreting every monomorphic data type as a different “sort
symbol”, we can easily obtain the following result:

Theorem 9 (CPO on meta-terms). Let (>,≥) be the primary type-respecting ordering relations defined
by CPO, and replace ≥ by the relation defined by the following clauses:

1. s : σ ≥ t : τ if σ ≥T τ and s > t

2. s : σ ≥ t : τ if σ =T τ and one of the following holds:

(a) s = λx.s′, t = λx.t ′ and s′ ≥ t ′;
(b) s = f s1 · · ·sn, t = f t1 · · · tn and s1 ≥ t1, . . . ,sn ≥ tn (with f ∈ V ∪F);
(c) s = Zσ (s1, . . . ,sn), t = Zσ (t1, . . . , tn) and s1 ≥ t1, . . . ,sn ≥ tn.

If l ↑η >+ r↑η for all rules l⇒ r ∈R, then⇒R is a terminating relation.

Given a set of rule schemes generating R it is not immediately clear how to (automatically) prove that
l ↑η > r↑η always holds, since the CPO ordering itself is not defined on polymorphic terms and not
preserved under eta-normalising. One way to use Theorem 9 when presented with finite rule schemes is
to define a new relation � on polymorphic meta-terms (for example using a subset or alteration of the
CPO clauses) and demonstrate that l � r implies lθ ↑η > rθ ↑η for all type substitutions θ . However,
such a definition is beyond the scope of this paper.

8 Concluding Remarks

In this paper we have presented a new formalism for higher order rewriting and embedded the most
common ways of higher order rewriting into it. We have additionally provided a number of theorems
to make it easier to reason about the formalism, and demonstrated that the system is not too general to
obtain real results by extending the computability path ordering to it.

Having derived a result in one of the many higher-order systems, it should be relatively easy to see
which aspects of the formalism are indispensable in the proof, and thus how to extend the result to other
formalisms.

References

[1] P. Aczel (1978): A General Church-Rosser Theorem. University of Manchester.

[2] F. Blanqui, J.-P. Jouannaud & A. Rubio (2008): The Computability Path Ordering: The End of a Quest. In:
Lecture Notes in Computer Science (CSL ’08), pp. 1–14.

[3] Nao Hirokawa, Aart Middeldorp & Harald Zankl (2008): Uncurrying for Termination. In: Proceedings of
the 15th International Conferences on Logic for Programming, Artificial Intelligence and Reasoning, Lecture
Notes in Artificial Intelligence 5330, Springer-Verlag, Doha, pp. 667–681.

16 Transposing Termination Properties

[4] J.-P. Jouannaud & M. Okada (1991): A computation model for executable higher-order algebraic speci-
fication languages. In: Proceedings of the 6th annual IEEE Symposium on Logic in Computer Science
(LICS’91), IEEE Computer Society Press, Amsterdam, The Netherlands, pp. 350–361.

[5] J.-P. Jouannaud & A. Rubio (1999): The higher-order recursive path ordering. In: Proceedings of the 14th
annual IEEE Symposium on Logic in Computer Science (LICS ’99), Trento, Italy, pp. 402–411.

[6] R. Kennaway, J.W. Klop, M.R. Sleep & F.J de Vries (1996): Comparing curried and uncurried rewriting.
Journal of Symbolic Computation 21(1), pp. 15–39.

[7] Z. Khasidashvili (1990): Expression Reduction Systems. In: Proceedings of I. Vekua Institute of Applied
Mathematics, 36, Tblisi, Georgia, pp. 200–220.

[8] J.W. Klop (1980): Combinatory Reduction Systems, Mathematical Centre Tracts 127. CWI, Amsterdam, The
Netherlands. PhD Thesis.

[9] J.W. Klop, V. van Oostrom & F. van Raamsdonk (1993): Combinatory reduction systems: introduction and
survey. Theoretical Computer Science 121(1-2), pp. 279 – 308.

[10] K. Kusakari (2001): On proving termination of term rewriting systems with higher-order variables. IPSJ
Transactions on Programming 42(SIG 7 PRO11), pp. 35–45.

[11] K. Kusakari, Y. Isogai, M. Sakai & F. Blanqui (2009): Static dependency pair method based on strong
computability for higher-order rewrite systems. IEICE Transactions on Information and Systems 92(10), pp.
2007–2015.

[12] R. Mayr & T. Nipkow (1998): Higher-Order Rewrite Systems and their Confluence. Theoretical Computer
Science 192, pp. 3–29.

[13] T. Nipkow (1991): Higher-order critical pairs. In: Proceedings of the 6th annual IEEE Symposium on Logic
in Computer Science (LICS ’91), Amsterdam, The Netherlands, pp. 342–349.

[14] V. van Oostrom (1994): Confluence for abstract and higher-order rewriting. Ph.D. thesis, Vrije Universiteit,
Amsterdam, The Netherlands.

[15] F. van Raamsdonk (2001): On Termination of Higher-Order Rewriting. In: A. Middeldorp, editor: Proceed-
ings of the 12th International Conference on Rewriting Techniques and Applications (RTA 2001), LNCS
2051, Utrecht, The Netherlands, pp. 261–275.

[16] M. Sakai, Y. Watanabe & T. Sakabe (2001): An extension of the dependency pair method for proving ter-
mination of higher-order rewrite systems. IEICE Transactions on Information and Systems E84-D(8), pp.
1025–1032.

[17] Wiki: Termination Portal. http://www.termination-portal.org/.
[18] D. Wolfram (1993): The Clausal Theory of Types, Cambridge Tracts in Theoretical Computer Science 21.

Cambridge University Press, Cambridge, United Kingdom.
[19] T. Yamada (2001): Confluence and termination of simply typed term rewriting systems. In: A. Middeldorp,

editor: Proceedings of the 14th International Conference on Rewriting Techniques and Applications (RTA
’01), LNCS 2051, Springer Verlag, Utrecht, The Netherlands, pp. 338–352.

http://www.termination-portal.org/

	Introduction
	Definition
	Functional Syntax
	Eta-normality
	Beta-normality
	Transforming Existing Formalisms
	Contraction Schemes
	Combinatory Reduction Systems
	Pattern Higher-order Rewrite Systems
	Algebraic Functional Systems
	Applicative Systems

	A Higher Order Recursive Path Ordering
	Concluding Remarks

