
Submitted to:
HOR 2014

c© C. Kop
This work is licensed under the
Creative Commons Attribution License.

The Higher-Order Dependency Pair Framework∗

Cynthia Kop
University of Innsbruck, Institute of Computer Science, 6020 Innsbruck, Austria

cynthia.kop@uibk.ac.at

In recent years, two different dependency pair approaches have been introduced: the dynamic and
static styles. The static style is based on a computability argument, and is limited to plain function-
passing systems. The dynamic style has no limitations, but standard techniques to simplify sets of
dependency pairs – such as the subterm criterion, usable rules and reduction pairs – are either not
applicable or significantly weaker. On the other hand, we can significantly improve the dynamic
approach for local systems. In this paper, I will discuss how to combine the dynamic and static styles
in a single dependency pair framework, extending various notions from the first-order setting.

1 Introduction

In modern termination tools for (first-order) term rewriting, the dependency pair framework [2, 3] plays a
crucial role. In this framework, a set of dependency pair problems is gradually simplified by dependency
pair processors until only trivial problems remain, in which case termination is proved.

In the higher-order setting, there are two main approaches to using dependency pairs, dynamic [8, 10]
and static [9, 11]. Both approaches have different strengths and weaknesses. The dynamic approach is
always applicable, but gives collapsing dependency pairs, which makes standard techniques like the
subterm criterion or usable rules hard to apply. On the other hand, the static approach is limited to plain
function-passing systems and surrenders completeness, but does not create collapsing dependency pairs
and therefore remains closer to the first-order dependency pair approach.

This paper endeavours to define a higher-order dependency pair framework. To avoid double work,
this framework is designed to handle both static and dynamic dependency pairs.

Note: the results in this paper have been published in the author’s PhD thesis [5, Ch. 7]. The results
are also closely related to, but a strict generalisation of, the definitions in [8].

2 Preliminaries

A basic understanding of first-order term rewriting, simple types and λ -calculus is assumed. I will intro-
duce algebraic functional systems, but (unlike usual definitions) use explicit meta-variables for matching.

A type declaration has the form [σ1× . . .×σn]→ τ with σ1, . . . ,σn,τ simple types (τ need not be
a base type). Given a set F of function symbols, each equipped with a type declaration and sets M,V
of meta-variables and variables, each with a type, meta-terms are expressions s such that s : σ can be
derived for some type σ using the clauses below, and terms are meta-terms without meta-variables:

x : σ if x : σ ∈M∪V
f (s1, . . . ,sn) : τ if f : [σ1× . . .×σn]→ τ ∈ F and s1 : σ1, . . . ,sn : σn

λx.s : σ → τ if x : σ ∈ V and s : τ

s · t : τ if s : σ → τ and t : σ

∗The research described in this paper is supported by the Austrian Science Fund (FWF) international project I963.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 The Higher-Order Dependency Pair Framework

We consider meta-terms modulo α-equality as usual, and denote FV(s) for the set of free variables of
s and FMV(s) for its meta-variables. The arity of f : [σ1× . . .×σn]→ τ ∈ F is n; we will often avoid
explicit function notation, and just denote f (s1, . . . ,sn) · sn+1 · · ·sm as f · s1 · · ·sm. A meta-term s is closed
if FV(s) = /0, linear if no meta-variable occurs more than once, a pattern if meta-variables do not occur
at the head of an application and fully extended if meta-variables do not occur below an abstraction.1

A substitution γ maps variables and meta-variables to terms of the same type, and is applied on a term
s, notation sγ , by replacing all x in its domain by γ(x) (renaming binders if necessary to avoid capture).
Let sD t if t is a (not necessarily strict) subterm of s; subterms may free previously bound variables.

A rule is a pair `⇒ r of a closed pattern ` and a closed meta-term r of the same type, such that `
is not a meta-variable, FMV(r) ⊆ FV(`), and r is β -normal. The root symbols f of rules f ·~l⇒ r ∈ R
are called defined symbols. Given a set of rules R, the relation⇒R is the smallest monotonic relation on
terms2 which includes the β -reduction relation⇒β and has `γ⇒R rγ for all `⇒ r ∈ R and substitutions
γ on domain FMV(`). An algebraic functional system (AFS) is the abstract rewriting system given by
the set of terms over F,V,M and the relation⇒R, and is usually given as the pair (F,R).

Example 1. We consider the AFS twice, with function symbols o : nat, s : [nat]→ nat, I : [nat]→ nat,
and twice : [nat→ nat×nat]→ nat. There are three rewrite rules (with meta-variables G,n):

I(o) ⇒ o I(s(n)) ⇒ s(twice(λx.I(x),n)) twice(G,n) ⇒ G · (G ·n)

3 Dependency Pairs and Chains

As mentioned in the introduction, there are different styles of rewriting: the static style, which relies on
a computability argument, and the dynamic style, which gives dependency pairs of a less practical shape,
but which is always applicable and gives an equivalence result. However, both are used in the same way;
the different styles of dependency pairs just give a different initial set. Let us start with some definitions.
We let F] be the signature F extended with for every function symbol f : [~σ]→ τ1→ . . .τm→ ρ (with ρ

a base type) a fresh symbol f] : [~σ]→ τ1→ . . .τm→ dpsort with dpsort a fresh base type. For a term
s, we define s] = f](~t) if s = f (~t), and s] = s if s has any other form, including applications f (~t) ·~q.

Definition 1. A dependency pair is a pair `V p such that:
• ` is a closed pattern of the form f · l1 · · · ln with f ∈ F] and all li patterns over F (here m≥ arity(f));

• p is a meta-term of the form B · p1 · · · pm with B ∈ F]∪M, and all p j terms over F.
Note that p may have a different type from `, have free variables, and use meta-variables not in `.

Intuitively, the free variables are used to deal with subterms of right-hand sides where bound variables
become free; in practice, they must be instantiated with fresh variables:

Definition 2. A substitution γ respects a dependency pair ` V p if its domain consists of all meta-
variables in ` and p and all free variables in p, and all variables are mapped to distinct fresh variables.

Dependency pairs (and respectful substitutions) are used in the notion of a chain:

Definition 3. For a set of dependency pairs P and a set of rules R, an infinite (P,R)-chain is a sequence
[(ρi,si, ti) | i ∈ N] with each ρi ∈ P∪{beta} and si, ti terms, and moreover:

1. if ρi = `V p ∈ P then there exists a substitution γ which respects ρi, such that si = `γ and ti = pγ .

1In [5], meta-variables are also permitted to take arguments, which allows us to encode a broad range of higher-order term
rewriting formalisms. This possibility was omitted here for simplicity, although similar results hold also for the extension.

2Meta-terms are just an auxiliary construct to describe rules and, later, dependency pairs, so do not need to be reduced.

C. Kop 3

2. if ρi = beta then si = (λx.q) ·u · v1 · · ·vk and either
(a) k > 0 and ti = q[x := u] · v1 · · ·vk, or
(b) k = 0 and there exists a non-variable term v with qD v and x ∈ FV(v) and ti = v][x := u];

3. ti⇒∗in si+1, that is: if ti = f ·q1 · · ·qn then si+1 = f ·u1 · · ·un with each q j⇒∗R u j, otherwise ti = si+1.
At first glance, this seems a bit more complicated than the corresponding notion in the first-order

setting. The reason are collapsing dependency pairs, where the right-hand side is headed by a meta-
variable. These lead to beta-reductions at the root, which may need to be followed by subterm steps.

In the first-order setting, particular interest goes to innermost chains: chains where subterms are
always immediately normalised using⇒∗R. This might be interesting in the higher-order setting as well,
but in this paper, let us instead consider a strategy that is almost the opposite of innermost rewriting.

Definition 4. For ` a fixed meta-term, s a term and γ a substitution whose domain contains only meta-
variables and variables not in FV(`), we say that s⇒∗R `γ by a formative `-reduction if λ~x.` is not a fully
extended linear pattern (where {~x}= FV(`)), or one of the following clauses holds:

1. s = `γ and ` is a meta-variable;

2. s = a · s1 · · ·sn and `= a · l1 · · · ln and each si⇒∗R liγ by a formative li-reduction for a ∈ F]∪V;

3. s = λx.s′ and `= λx.l′ and s′⇒∗R l′γ by a formative l′-reduction (with x of course not used in γ);

4. s = (λx.t) ·q ·~u, and t[x := q] ·~u⇒∗R `γ by a formative `-reduction;

5. ` is not a meta-variable and there are `′ ⇒ r′ ∈ R and δ such that s⇒∗R `′δ by a formative `′-
reduction and rδ ⇒∗R `γ by a formative `-reduction which does not use clause 5.

The key point of this definition is 1: when reducing to a meta-variable X , we are not allowed to take
any intermediate steps other than β -reductions, which must be done immediately. Essentially, we take
only those steps which are needed to create a pattern of the form `γ for some γ .

We say a (P,R)-chain [(ρi,si, ti) | i ∈ N] is formative if for all i: if ρi+1 = `⇒ p then ti⇒∗R si+1 by a
formative `-reduction. The chain is minimal if the strict subterms of all ti are terminating in⇒R.

3.1 Static Dependency Pairs

For an AFS with base output types (that is, for all f : [σ1× . . .×σn]→ τ ∈ F the type τ is base) which
is plain function-passing (that is, if f ·~l ⇒ r ∈ R and X ∈ FMV(r) then either X has base type, or X
is one of the li), the set of static dependency pairs SDP(R) is defined as the set of all dependency pairs
f](~l)⇒ g](p′1, . . . p′n) where f (~l)⇒ r ∈ R and rD g(~p) and g is the root symbol of some rule in R and
each p′i is pi with free variables replaced by a corresponding meta-variable.

Example 2. The static dependency pairs for the system from Example 1 are:
I](s(n)) ⇒ twice](λx.I(x),n) I](s(n)) ⇒ I](m)

Theorem 5. [9, 11, 5] A plain function-passing AFS with base output types and rules R is terminating if
there is no infinite minimal formative (SDP(R),R)-chain.

This is not an if and only if because the right-hand sides may introduce fresh meta-variables (like m
in Example 2). If no fresh meta-variables are introduced, then we do have an equivalence.

3.2 Dynamic Dependency Pairs

For an AFS R, let Rsat (the β -saturated rules) be R extended with, for every rule `⇒ λx1 . . .xn.r ∈ R
with n≥ 0 and r not an abstraction, the n rules ` ·Z1⇒ λx2 . . .xn.r[x1 := Z1], . . . , ` ·Z1 · · ·Zn⇒ r[x1 :=
Z1, . . . ,Zn], where the Zi are fresh meta-variables. Let Rfull contain all elements of Rsat and additionally

4 The Higher-Order Dependency Pair Framework

for all rules `⇒ r ∈ Rsat of composed type, but where r is not an abstraction, all well-typed rules
` ·Z1 · · ·Zn ⇒ r ·Z1 · · ·Zn. The set of dynamic dependency pairs DDP(R) contains all dependency pairs
f] ·~l⇒ p] where f ·~l⇒ r ∈ Rsat and rD p = a ·~p with a either a defined symbol or a meta-variable.

Example 3. For R from Example 1, Rfull = R, as all symbols have base output type. DDP(R) contains:
I](s(n)) ⇒ twice](λx.I(x),n) twice](G,n) ⇒ G · (G ·n)
I](s(n)) ⇒ I](x) twice](G,n) ⇒ G ·n

Here, x is a variable, not a meta-variable, so can only be instantiated by fresh variables in a chain.

Theorem 6. [5] An AFS R is terminating iff there is no infinite minimal formative (DDP(R),Rfull)-chain.

4 The Higher-order Dependency Pair Framework (for Termination)

Now, given an AFS (F,R), we assume given initial sets DP and R′ with the following property:
If there is no infinite minimal formative (DP,R′)-chain, then (F,R) is terminating.

These initial sets may be given by either the dynamic or the static approach.

Definition 7. A dependency pair problem (DP problem) is a tuple (P,R, f1, f2) where P is a set of depen-
dency pairs, R a set of rules, f1 ∈ {m,a} (minimal, arbitrary) and f2 ∈ {f,a} (formative, arbitrary). A DP
problem (P,R, f1, f2) is called finite if there is no infinite (P,R)-chain which moreover is minimal if f1 = m

and formative if f2 = f. A dependency pair processor is a function which takes a DP problem as input
and returns a (possibly empty) set of DP problems. A processor proc is sound if, for all DP problems A:
if all B ∈ proc(A) are finite, then A is finite.

The dependency pair framework, now, is the following non-deterministic algorithm:
1. start with A := {(DP,R′)};
2. select a DP problem X ∈ A and choose a sound processor proc;

3. update A := (A\{X})∪proc(X)

4. if A = /0 then conclude termination, otherwise continue with 2.
(We could also use the framework to prove non-termination, but this is omitted for space reasons.)
There are various processors; to name some from [5]: the dependency graph, the subterm criterion,

first-order splitting and formative rules. The last of these removes elements from the set R; the others map
to DP problems with smaller P. Similar to the first-order setting, several processors are based on reduc-
tion triples. However, here we must take care: due to subterm steps, we have some extra requirements.

5 Reduction Triple Processors

To start, let us define a counterpart to the first-order reduction pairs:

Definition 8. A reduction triple (%,�,�) consists of two quasi-orderings %,� and a well-founded
ordering � such that % and � are compatible with � (so both % · � ⊆ � and � · � ⊆ �), % is
monotonic and orients⇒β , and %,�,� are all meta-stable.

Here, a relation R is meta-stable if it is preserved under variable renaming and `γ R rγ whenever ` R r
and ` is a pattern of the form f ·~l with f ∈ F and γ is a substitution on domain FMV(`)∪FMV(r).

We don’t directly apply reduction triples on the sets in a DP problem, but rather on ordering problems:

Definition 9. The ordering problem for (P1,P2,R, f) with f ∈ {f,a} is:
• (P1,P2,R,none) if all dependency pairs in P1∪P2 are non-collapsing;

C. Kop 5

• (P1,P2,R,subterm) if some dependency pair in P1∪P2 is collapsing, and f = a or some element
of P1∪P2∪R is not local, where local means: both left-linear and fully extended;

• ({`V tag(p) | `V p∈P1},{`V tag(p) | `V p∈P2},{`⇒ tag(r) | `⇒ r ∈R}∪Runtag, tagsub)
if any dependency pair in P1∪P2 is collapsing, and f = f and all elements are P1∪P2∪R are local.
Here, F− is a new signature which contains a symbol f− : σ for all f : σ ∈ F such that f occurs
between a bound variable and its binder in a right-hand side of P or R (so r D q = f (~q) and
FV(q) 6⊆ FV(r) for (`,r) ∈ P∪R). Also, tag(s) replaces all occurrences of symbols f between a
bound variable and its binder by f−. The set Runtag consists of rules f−(x1, . . . ,xn)⇒ f (x1, . . . ,xn)
for f− : [σ1× . . .×σn]→ τ ∈ F− and all xi ∈M.

A reduction triple (%,�,�) orients an ordering problem (A1,A2,B,prop) if:
• `� p for all `V p ∈ A1 and `� p for all `V p ∈ A2 and `% r for all `⇒ r ∈ B;

• if prop = subterm, then % satisfies the subterm property: for all s, t: if sD t then there is a substi-
tution γ with domain FV(t)\FV(s) such that s % t]γ;

• if prop = tagsub, then % satisfies the tagged subterm property: for all x ∈ V and terms s, t,q with
sDq 6= x and x ∈ FV(q), there is a substitution γ with tag((λx.s) · t)% tag(q][x := t]γ).

Note that requiring the subterm property is painful, for it makes it impossible to use argument fil-
terings, where some arguments of a function symbol are not regarded by reduction triples. The tagged
subterm property, however, is a lot weaker, as it only affects symbols between a variable and its binder.

Theorem 10. Fixing (%,�,�), a processor which maps (P,R, f1, f2) to the following result, is sound:
• {(P2,R, f1, f2)} if P = P1]P2 and (%,�,�) orients the ordering problem for (P1,P2,R, f2);

• {(P,R, f1, f2)} otherwise.
The reason to define ordering problems, rather than directly having different cases in the definition of

the processor, is because ordering problems can be reused in other processors based on reduction triples.
For an example, let us consider usable and formative rules with respect to an argument filtering.

Definition 11. An argument filtering is a function π which maps each symbol f : [σ1× . . .×σn]→ τ to
a subset of {1, . . . ,n}. Given s,R and π , let UR(s,R,π) be the smallest subset of R such that:
• UR(s,R,π) = R if R is not finitely branching (that is, if some s has infinitely many direct reducts);

• if `⇒ r ∈ UR(s,R,π) then UR(r,R,π)⊆ UR(s,R,π);

• if s = f · s1 · · ·sm with arity(f) = n ≤ m, then UR(si,R,π) ⊆ UR(s,R,π) for all i ∈ π(f)∪{n+
1, . . . ,m}, and UR(s,R,π) also contains all rules of the form f · l1 · · · lm⇒ r ∈ R (same m);

• if s = x · s1 · · ·sn with x a variable, then UR(si,R,π)⊆ UR(s,R,π) for all i;

• if s = λx.t, then UR(t,R,π)⊆ UR(s,R,π);

• if s = X · s1 · · ·sn and n > 0, then UR(s,R,π) = R for X ∈M (if n = 0, then UR(X ,R,π) = /0).
Similarly, for a pattern s, let FR(s,R,π) be the smallest subset of R such that:
• FR(s,R,π) = R if s is not linear or not fully extended;

• if `⇒ r ∈ FR(s,R,π) then FR(`,R,π)⊆ FR(s,R,π);

• if s = f · s1 · · ·sm with arity(f) = n ≤ m, then FR(si,R,π) ⊆ FR(s,R,π) for all i ∈ π(f)∪{n+
1, . . . ,m} and FR(s,R,π) contains all rules of the form `⇒ f · r1 · · ·rm (same m);

• if s = x · s1 · · ·sn with x a variable, then FR(si,R,π)⊆ FR(s,R,π) for all i;

• if s = λx.t, then FR(t,R,π)⊆ FR(s,R,π);

• if s : σ and s /∈M, then FR(si,R,π) contains all rules `⇒ X ·~r ∈ R where ` : σ and X ∈M.
We define UR(P,R,π) =

⋃
`Vp∈P UR(p,R,π) and FR(P,R,π) =

⋃
`Vp∈P FR(`,R,π).

6 The Higher-Order Dependency Pair Framework

Claim 12. Let π be an argument filtering, and (%,�,�) a reduction triple such that for all si, ti we have:
f (. . . ,si, . . .) % f (. . . , ti, . . .) if i /∈ π(f). A processor which maps (P,R, f1, f2) to {(P2,R, f1, f2)} if P =
P1]P2, f1 = m, f2 = f and (%,�,�) orients the ordering problem for (P1,P2,UR(P,FR(P,R,π),π), f2),
and to {(P,R, f1, f2)} otherwise, is sound.

(The proof of this claim is still work in progress, but it seems true.)

6 Conclusions

In this paper, we have seen a higher-order version of the dependency pair framework, as it is typically
used in first-order termination analysis. Although we still have to choose, at the beginning, whether to
use static or dynamic dependency pairs, the framework itself is the same for either choice.

Compared to the dependency pair approach in [8], the framework has significant advantages. In
particular, in [8], tags are carried along in DP problems; here, thanks to the formative flag, they are
restricted to processors with reduction triples, which simplifies reasoning for other processors. Even for
processors based on reduction pairs (like the reduction pair processor with usable rules), we do not have
to define special cases for the various subterm properties. The formative flag also makes it possible to use
formative rules with respect to an argument filtering, which was not possible with the definitions of [8].

This version of the DP framework is implemented in the higher-order termination tool Wanda [4].
This tool uses a more general formalism, AFSMs rather than AFSs, where meta-variables can take argu-
ments (like in [5]) and right-hand sides of rules do not need to be β -normal; however, she is optimised
for AFSs as described here. Additionally, following [6], the static approach is extended: base output
types are not needed if we use Rfull like in the dynamic approach, and “plain function passing” can be
weakened to allow functional meta-variables at accessible positions of the left-hand sides.

References
[1] C. Fuhs & C. Kop (2014): First-Order Formative Rules. In: Proceedings of RTA-TLCA ’14. To appear.

[2] J. Giesl, R. Thiemann, P. Schneider-Kamp & S. Falke (2006): Mechanizing and Improving Dependency Pairs.
Journal of Automated Reasoning 37(3).

[3] N. Hirokawa & A. Middeldorp (2005): Automating the dependency pair method. Information and Computa-
tion 199(1-2).

[4] C. Kop: WANDA – a higher order termination tool. http://www.few.vu.nl/~kop/code.html.

[5] C. Kop (2012): Higher Order Termination. Ph.D. thesis, Vrije Universiteit Amsterdam.

[6] C. Kop (2013): Static Dependency Pairs with Accessibility. http://cl-informatik.uibk.ac.at/

users/kop/static.pdf.

[7] C. Kop & F. van Raamsdonk (2011): Higher Order Dependency Pairs for Algebraic Functional Systems. In
M. Schmidt-Schauß, editor: Proceedings of RTA ’11, LIPIcs 10, Dagstuhl.

[8] C. Kop & F. van Raamsdonk (2012): Dynamic Dependency Pairs for Algebraic Functional Systems. Logical
Methods in Computer Science 8(2). Included in the Special Issue for RTA ’11.

[9] K. Kusakari, Y. Isogai, M. Sakai & F. Blanqui (2009): Static dependency pair method based on strong
computability for higher-order rewrite systems. IEICE Transactions on Information and Systems 92(10).

[10] M. Sakai, Y. Watanabe & T. Sakabe (2001): An extension of the dependency pair method for proving termi-
nation of higher-order rewrite systems. IEICE Transactions on Information and Systems E84-D(8).

[11] S. Suzuki, K. Kusakari & F. Blanqui (2011): Argument Filterings and Usable Rules in Higher-Order Rewrite
Systems. IPSJ Transactions on Programming 4(2).

http://www.few.vu.nl/~kop/code.html
http://cl-informatik.uibk.ac.at/users/kop/static.pdf
http://cl-informatik.uibk.ac.at/users/kop/static.pdf

	Introduction
	Preliminaries
	Dependency Pairs and Chains
	Static Dependency Pairs
	Dynamic Dependency Pairs

	The Higher-order Dependency Pair Framework (for Termination)
	Reduction Triple Processors
	Conclusions

