
Higher-Order LCTRSs and Their Termination

Liye Guo and Cynthia Kop

Radboud University, Netherlands

1 Introduction

Logically constrained term rewriting systems (LCTRSs) [4, 1] are a formalism for analyzing
programs. In real-world programming, data types such as integers, as opposed to natural
numbers, and arrays are prevalent. Any practical program analyzing technique should be
prepared to handle these. One of the defining features of the LCTRS formalism is its native
support for such data types, which are not (co)inductively defined and need to be encoded if
handled by more traditional TRSs. Another benefit of the formalism is its separation between
logical constraints modeling the control flow and other terms representing the program states.

So far, program analysis on the basis of LCTRSs has concerned imperative programs since
LCTRSs were introduced as a first-order formalism. We are naturally curious to see if functional
programs can also be analyzed by constrained rewriting. What we present here is our ongoing
exploration in this direction: First, we define a higher-order variant of the LCTRS formalism,
which, despite the absence of lambda abstractions, is capable of representing some real-world
functional programs straightforwardly. Then we take a brief look at the termination problem for
this new formalism as termination analysis is by itself an important aspect of program analysis
as well as a prerequisite for determining some other properties.

2 LCSTRS

We start defining logically constrained simply-typed term rewriting systems (LCSTRSs) with
types and terms. We postulate a set S, whose elements we call sorts, and a subset Sϑ of S,
whose elements we call theory sorts. The set T of types and its subset Tϑ, called the set of
theory types, are generated as follows: T ::= S | (T → T) and Tϑ ::= Sϑ | (Sϑ → Tϑ). Right-
associativity is assigned to → so we can omit some parentheses in types. We assume given
disjoint sets F and V, whose elements we call function symbols and variables, respectively. The
grammar T ::= F | V | (T T) generates the set T of pre-terms. Left-associativity is assigned to
the juxtaposition operation in the above grammar so t0 t1 t2 stands for ((t0 t1) t2), for example.
We assume that every function symbol and variable is assigned a unique type. Typing works
as expected: if pre-terms t0 and t1 have types A → B and A, respectively, t0 t1 has type B.
Pre-terms having a type are called terms. We write t : A if a term t has type A. We postulate
a subset Fϑ of F , whose elements we call theory (function) symbols, and assume that theory
symbols have theory types. Terms constructed with only theory symbols and variables are
called logical terms. The set of variables in a term t, denoted by Var(t), is defined as follows:
Var(f) = ∅, Var(x) = {x } and Var(t0 t1) = Var(t0)∪Var(t1). A term t is called a ground term
if Var(t) = ∅. Note that ground logical terms always have theory types.

Logical terms are distinguished because they will be treated specially when we define the
rewrite relation. First, let us define the interpretation of ground logical terms. We postulate
an Sϑ-indexed family of sets (XA)A∈Sϑ

, and extend it to a Tϑ-indexed family of sets by letting
XA→B be the set of maps from XA to XB . Now we assume given a Tϑ-indexed family of maps
([[·]]A)A∈Tϑ

where [[·]]A assigns to each theory symbol whose type is A an element of XA and is

bijective if A ∈ Sϑ. Theory symbols whose type is a theory sort are called values. We extend
each indexed map [[·]]B to a map that assigns to each ground logical term whose type is B
an element of XB by letting [[t0 t1]]B be [[t0]]A→B([[t1]]A). We omit the type and write just [[·]]
whenever the type can be deduced from the context. [[t]] is called the interpretation of t.

A substitution is a type-preserving map from variables to terms. Every substitution σ
extends to a type-preserving map σ̄ from terms to terms. We write tσ for σ̄(t) and define it as
follows: fσ = f , xσ = σ(x) and (t0 t1)σ = (t0σ) (t1σ). Now we postulate a theory sort B and
theory symbols ⊥ : B and ⊤ : B. Let XB be { 0, 1 } and assume [[⊥]] = 0 and [[⊤]] = 1. A rewrite
rule ℓ → r [φ] is a triple where (i) ℓ and r are terms which have the same type, (ii) ℓ is not a
logical term, (iii) φ is a logical constraint, i.e., φ is a logical term whose type is B and the type
of each variable in Var(φ) is a theory sort, and (iv) the type of each variable in Var(r) \Var(ℓ)
is a theory sort. A substitution σ is said to respect a rewrite rule ℓ → r [φ] if σ(x) is a value
for all x ∈ Var(φ) ∪ (Var(r) \ Var(ℓ)) and [[φσ]] = 1. A set R of rewrite rules induces a rewrite
relation →R on terms such that t →R t′ if and only if one of the following conditions is true:

• t = ℓσ and t′ = rσ for some ℓ → r [φ] ∈ R and some substitution σ that respects
ℓ → r [φ].

• t = f v1 · · · vn where f is a theory symbol but not a value while vi is a value for all i, the
type of t is a theory sort, and t′ is the unique value such that [[f v1 · · · vn]] = [[t′]].

• t = t0 t1, t
′ = t0

′ t1 and t0 →R t0
′.

• t = t0 t1, t
′ = t0 t1

′ and t1 →R t1
′.

Logical constraints are essentially first-order—higher-order variables are excluded and theory
symbols take only first-order arguments. We adopt this restriction because many conditions
in functional programs are still first-order and solving higher-order constraints is hard. That
is not to say that higher-order constraints are of no interest; we simply leave them out of the
scope of LCSTRSs.

Below is an example LCSTRS:

init → fact n exit [⊤] fact n k → k 1 [n ≤ 0]

comp g f x → g (f x) [⊤] fact n k → fact (n− 1) (comp k (∗ n)) [n > 0]

Here init and exit denote the start and the end of the program, respectively. The core of the
program is fact, which computes the factorial function in continuation-passing style, and comp
is an auxiliary function for function composition. Integer literals and operators are theory
symbols. Note that we use infix notation to improve readability. The occurrence of n in the
rewrite rule defining init is an example of a variable that occurs on the right-hand side but not
on the left-hand side of a rewrite rule. Such variables can be used to model user input.

Let R denote the set of rewrite rules in the example and consider the rewrite sequence

fact 1 exit →R fact (1− 1) (comp exit (∗ 1)) →R fact 0 (comp exit (∗ 1)) →R comp exit (∗ 1) 1.

In the second step, no rewrite rule is invoked. Such rewrite steps are called calculation steps.
We can write →∅ for a calculation step. Terms s and t are said to be joinable by →∅, written
as s ↓∅ t, if there exists a term r such that s →∗

∅ r and t →∗
∅ r.

3 Termination

In order to prove that a given (unconstrained) TRS R is terminating, we usually look for a
stable, monotonic and well-founded relation ≻ which orients every rewrite rule in R, i.e., ℓ ≻ r
for all ℓ → r ∈ R. This standard technique, however, requires a few tweaks to be applied to
LCSTRSs. First, stability should be tightly coupled with rule orientation because every rewrite
rule in an LCSTRS is equipped with a logical constraint, which decides what substitutions are
expected when the rewrite rule is invoked. Therefore, we say that a type-preserving relation
≻ on terms orients a rewrite rule ℓ → r [φ] if ℓσ ≻ rσ for each substitution σ that respects
the rewrite rule. Second, the monotonicity requirement can be weakened because ℓ is never a
logical term in a rewrite rule ℓ → r [φ]. We say that a type-preserving relation ≻ on terms
is rule-monotonic if t0 ≻ t0

′ implies t0 t1 ≻ t0
′ t1 when t0 is not a logical term, and t1 ≻ t1

′

implies t0 t1 ≻ t0 t1
′ when t1 is not a logical term.

We present a tentative definition of HORPO [2] on LCSTRSs. For each theory sort A, we
postulate theory symbols ⊐A : A → A → B and ⊒A : A → A → B such that [[⊐A]] is a well-
founded ordering on XA and [[⊒A]] is the reflexive closure of [[⊐A]]. We omit the sort and write
just ⊐ and ⊒ whenever the sort can be deduced from the context. Given the precedence ▶,
a well-founded ordering on function symbols such that f ▶ g for all f ∈ F \ Fϑ and g ∈ Fϑ,
and the status stat, a map from F to { l,m2,m3, . . . }, the higher-order recursive path ordering
(HORPO) (≿φ,≻φ) is a family of type-preserving relation pairs on terms indexed by logical
constraints and defined as follows:

• s ≿φ t if and only if one of the following conditions is true:

– s and t are logical terms whose type is a theory sort, Var(φ) ⊇ Var(s) ∪ Var(t) and
φ |= ⊒ s t.

– s ≻φ t.

– s ↓∅ t.

– s is not a logical term, s = s1 s2, t = t1 t2, s1 ≿φ t1 and s2 ≿φ t2.

• s ≻φ t if and only if one of the following conditions is true:

– s and t are logical terms whose type is a theory sort, Var(φ) ⊇ Var(s) ∪ Var(t) and
φ |= ⊐ s t.

– s and t have the same type and s ▷φ t.

– s is not a logical term, s = x s1 · · · sn where x is a variable, t = x t1 · · · tn, si ≿φ ti
for all i and there exists i such that si ≻φ ti.

• s ▷φ t if and only if s is not a logical term, s = f s1 · · · sm where f is a function symbol,
and one of the following conditions is true:

– si ≿φ t for some i.

– t = t0 t1 · · · tn and s ▷φ ti for all i.

– t = g t1 · · · tn, f ▶ g and s ▷φ ti for all i.

– t = f t1 · · · tn, stat(f) = l, s1 · · · sm ≻l
φ t1 · · · tn and s ▷φ ti for all i.

– t = f t1 · · · tn, stat(f) = mk, k ≤ n, s1 · · · smin(m,k) ≻m
φ t1 · · · tk and s ▷φ ti for all i.

In the above, s1 · · · sm ≻l
φ t1 · · · tn if and only if ∃i ≤ min(m,n) (si ≻φ ti ∧ ∀j < i sj ≿φ tj),

≻m
φ is the generalized multiset extension of (≿φ,≻φ) (see [3]), and φ |= φ′ denotes, on the

assumption that φ and φ′ are logical constraints such that Var(φ) ⊇ Var(φ′), that for each
substitution σ which maps variables in Var(φ) to values, [[φσ]] = 1 implies [[φ′σ]] = 1.

The design is that ≻⊤ should orient a rewrite rule ℓ → r [φ] if ℓ ≻φ r. Then once a
combination of ⊐, ▶ and stat that guarantees ℓ ≻φ r for all ℓ → r [φ] ∈ R is present, we
can conclude that the LCSTRS R is terminating. The soundness of this method relies on the
following properties of ≻φ, which we must prove:

• ≻⊤ orients ℓ → r [φ] if ℓ ≻φ r.

• ≻⊤ is rule-monotonic.

• ≻⊤ is well-founded.

• →∅ ; ≻⊤ ⊆ ≻⊤.

Note that →∅ is well-founded because the size strictly decreases through every calculation step.
Consider the example LCSTRS given in the previous section. Any combination of ⊐, ▶

and stat that satisfies the following properties would witness the well-foundedness of →R:
[[⊐]] = λxy. x > 0 ∧ x > y, init ▶ fact ▶ comp, init ▶ exit and stat(fact) = l.

4 Future Work

LCSTRSs are still a work in progress. While the formalism itself is in a somewhat stable state,
the above method for termination analysis is in active development. First and foremost, we need
to prove that HORPO on LCSTRSs has the expected properties. When the theory is complete,
we would like to make a tool to automate the finding of HORPO on LCSTRSs. It would also be
interesting to explore other methods for termination analysis on the new formalism, including
StarHorpo [3] (a transitive variant of HORPO), interpretation-based methods and dependency
pairs. Another direction is to go beyond LCSTRSs by augmenting the formalism with lambda
abstractions or higher-order constraints.

References

[1] C. Fuhs, C. Kop, and N. Nishida. Verifying procedural programs via constrained rewriting induction.
ACM Transactions on Computational Logic, 18(2):14:1–14:50, 2017.

[2] J.-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In Proc. LICS, pages
402–411, 1999.

[3] C. Kop. Higher Order Termination. PhD thesis, VU Amsterdam, 2012.

[4] C. Kop and N. Nishida. Term rewriting with logical constraints. In Proc. FroCoS, pages 343–358,
2013.

	Introduction
	LCSTRS
	Termination
	Future Work

