
Nijn/ONijn: A New Certification Engine for Higher-Order

Termination∗

Cynthia Kop, Deivid Vale, and Niels van der Weide

Institute for Computing and Information Sciences
Radboud University, Nijmegen, The Netherlands

{c.kop,deividvale,nweide}@cs.ru.nl

1 Introduction

In this short paper, we limn a new combination Nijn/ONijn for the certification of higher-order
rewriting termination proofs. A complete version of this work has been accepted for publication
at ITP 2023 [8]. We follow the following system design in Nijn/ONijn: Nijn [7] is the certifier,
a Coq library providing a formalization of the underlying higher-order rewriting theory and
ONijn [6] is a proof script generator, an application that when given a minimal description of
a termination proof, i.e., proof trace, outputs a Coq proof script. The proof script is a fully
formal description of the syntax signature used by the TRS and the specification of each rule in
the system together with the formal steps needed to express its termination. The proof script
then utilizes results from Nijn for checking the correctness of the traced proof. Examples of this
system design are the combinations Cochinelle/CiME3 [2] and CoLoR/Rainbow [1].

The schematic below depicts the basic steps for producing proof certificates using Nijn/ONijn.

Figure 1: Nijn/ONijn schematics

A termination prover in this schematic is an abstract entity responsible for producing proof
traces. It can be either a human, proving termination manually, or a termination tool like
Wanda [4], which uses programmed techniques and automated reasoning tools such as SAT/SMT
solvers. Whenever a prover outputs a proof trace, we can use ONijn to process it into a formal
proof script in Coq. At this moment, we have formalized the polynomial interpretation method.

∗This work is supported by the following NWO projects: “Implicit Complexity through Higher-Order
Rewriting”, NWO 612.001.803/7571; NWO VIDI project “Constrained Higher-Order Rewriting and Program
Equivalence”, NWO VI.Vidi.193.075; and “The Power of Equality” NWO OCENW.M20.380.



Notice that producing the certificates for only this proof method is an inherently incomplete
task, since it would require a method to solve inequalities over arbitrary polynomials, which is
undecidable in general.

While Nijn is the certified core part of our tool since it is checked by Coq, the proof script
generation implemented in OCaml (ONijn) is not currently certified and must be trusted. For
this reason, we deliberately keep ONijn as simple (small) as possible. The main task delegated
to ONijn is that of parsing the proof trace given by the termination prover to a Coq proof script
and perform sanitazation on the prover’s input, so that syntax errors are avoided in the proof
script. This approach does not pose significant drawbacks in our experience.

2 Encoding TRSs in Nijn

Let us encode Rmap in Coq using Nijn. This will be useful to demonstrate our choices in the
formalization and show how to express rewriting systems directly in Coq. The file containing the
full enconding can be found at Map.v. A simple example of a higher-order system is that of Rmap.
It represents the higher-order function that applies a function to each element of a list. Recall that
Rmap is composed of two rules: mapF nil → nil and mapF (consxxs) → cons (F x) (mapF xs).
These rules are under a typing context where F : nat ⇒ nat, x : nat, and xs : list. We start by
encoding base types.

Inductive base_types := TBtype | TList.
Definition Btype : ty base_types := Base TBtype.
Definition List : ty base_types := Base TList.

The abbreviations Btype and List is to smoothen the usage of the base types. There are three
function symbols in this system:

Inductive fun_symbols := TNil | TCons | TMap.

The arity function map_ar maps each function symbol in fun_symbols to its type.

Definition map_ar f : ty base_types

:= match f with

| TNil ⇒ List

| TCons ⇒ Btype −→List −→ List

| TMap ⇒ (Btype −→ Btype) −→ List −→ List

end.

So, TNil is a list and given an inhabitant of Btype and List, the function symbol TCons gives a
List. Again we introduce some abbreviations to simplify the usage of the function symbols.

Definition Nil {C} : tm map_ar C _ := BaseTm TNil.
Definition Cons {C} x xs : tm map_ar C _ := BaseTm TCons · x · xs.
Definition Map {C} f xs : tm map_ar C _ := BaseTm TMap · f · xs.

The first rule, mapF nil → nil, is encoded as the following Coq construct:

Program Definition map_nil :=
make_rewrite

(_ ,, •) _

(let f := TmVar Vz in Map · f · Nil)
Nil.

Notice that we only defined the pattern of the first two arguments of make_rewrite, leaving the
types in the context (_ ,, •) and the type of the rule unspecified. Coq can fill in these holes

https://nmvdw.github.io/Nijn/html/Nijn.Examples.Map.html


automatically, as long as we provide a context pattern of the correct length. In this particular
rewrite rule, there is only one free variable. As such, the variable TmVar Vz refers to the only
variable in the context. In addition, we use iterated let-statements to imitate variable names.
For every position in the context, we introduce a variable in Coq, which we use in the left-
and right-hand sides of the rule. This makes the rules more human-readable. Indeed, the lhs
map F nil of this rule is represented as Map · f · Nil in code. The second rule for map is encoded
following the same ideas.

Program Definition map_cons :=
make_rewrite

(_ ,, _ ,, _ ,, •) _

(let f := TmVar Vz in let x := TmVar (Vs Vz) in let xs := TmVar (Vs (Vs Vz)) in
Map · f · (Cons · x · xs))
(let f := TmVar Vz in let x := TmVar (Vs Vz) in let xs := TmVar (Vs (Vs Vz)) in
Cons · (f · x) · (Map · f · xs)).

3 Practical Aspects of Nijn/ONijn Certification

In this section, we discuss the practical aspects of our verification framework. In principle one
can manually encode rewrite systems as Coq files and use the formalization we provide to verify
their own termination proofs. However, this is cumbersome to do so. Indeed, in the last section
we used abbreviations to make the formal description of Rmap more readable. A rewrite system
with many more rules would be difficult to encode manually. Additionally, to formally establish
termination we also need to encode proofs. The full formal encoding of Rmap and its termination
proof is found in the file Map.v.

3.1 Proof traces for polynomial interpretation

This difficulty of manual encoding motivates the usage of proof traces. A proof trace is a
human-friendly encoding of a TRS and the essential information needed to reconstruct the
termination proof as a Coq script. Let us again consider Rmap as an example. The proof trace
for this system starts with YES to signal that we have a termination proof for it. Then we have
a list encoding the signature and the rules of the system.

YES

Signature: [

cons : a -> list -> list ;

map : list -> (a -> a) -> list ;

nil : list

]

Rules: [

map nil F => nil ;

map (cons X Y) G => cons (G X) (map Y G)

]

Notice that the free variables in the rules do not need to be declared nor their typing information
provided. Coq can infer this information automatically. The last section of the proof trace
describes the interpretation of each function symbol in the signature.

https://nmvdw.github.io/Nijn/html/Nijn.Examples.Map.html


Interpretation: [

J(cons) = Lam[y0;y1].3 + 2*y1;

J(map) = Lam[y0;G1].3*y0 + 3*y0 * G1(y0);

J(nil) = 3

]

We can fully reconstruct a formal proof of termination for Rmap, which uses the theory
formalized in Nijn, with the information provided in the proof trace above. The full description
of proof traces can be found in [6], the API for ONijn. Proof traces are not Coq files. So we need
to further compile them into a proper Coq script. The schematics in fig. 1 describe the steps
necessary for it. We use ONijn to compile proof traces to Coq script. It is invoked as follows:

onijn path/to/proof/trace.onijn -o path/to/proof/script.v

Here, the first argument is the file path to a proof trace file and the -o option requires the file
path to the resulting Coq script. The resulting Coq script can be verified by Nijn as follows:

coqc path/to/proof/script.v

Instructions on how to locally install ONijn/Nijn can be found at [6].

3.2 Verifying Wanda’s Polynomial Interpretations

It is worth noticing that the termination prover is abstract in our certification framework. This
means that we are not bound to a specific termination tool. So we can verify any termination
tool that implements the interpretation method described here and can output proof traces in
ONijn format.

Since Wanda [4] is a termination tool that implements the interpretation method in [3], it is
our first candidate for verification. We added to Wanda the runtime argument --formal so it
can output proof traces in ONijn format. In [4] one can find details on how to invoke Wanda.
For instance, we illustrate below how to run Wanda on the map AFS.

./wanda.exe -d rem --formal Mixed_HO_10_map.afs

The setting -d rem sets Wanda to disable rule removal. The option --formal sets Wanda to
only use polynomial interpretations and output proofs to ONijn proof traces. Running Wanda
with these options gives us the proof trace we used for Rmap above. The latest version of Wanda,
which includes this parameter, is found at [5].

The table below describes our experimental evaluation on verifying Wanda’s output with the
settings above. The benchmark set consists of those 46 TRSs that Wanda outputs YES while
using only polynomial interpretations and no rule removal. The time limit for certification of
each system is set to 60 seconds.

The experiment was run in a machine with M1 Pro 2021 processor with 16GB of RAM.
Memory usage of Nijn during certification ranges from 400MB to 750MB. We provide the
experimental benchmarks at https://github.com/deividrvale/nijn-coq-script-generation.

Wanda Nijn/ONijn
Technique # YES Pct. Avg. Time # Certified Perc. Avg. Time
Poly, no rule removal 46 23% 0.07s 46 100% 4.06s

Table 1: Experimental Results

Hence, we can certify all TRSs proven SN by Wanda using only polynomial interpretations.

https://github.com/deividrvale/nijn-coq-script-generation


4 Conclusion and Future Plans

In this formalization effort, we were successful in certifying higher-order polynomial interpreta-
tions. This line of work is far from finished, however. The initial setup of Nijn/ONijn presented
here bootstraps the foundation of a full-fledged certification engine for more complex higher-order
termination proof techniques. For instance, incorporating the so-called higher-order dependency
pair framework is our next immediate future work plan. This will allow us to significantly
improve the number of systems we can certify.

References

[1] Frédéric Blanqui and Adam Koprowski. CoLoR: a Coq library on well-founded rewrite
relations and its application to the automated verification of termination certificates. Math.
Struct. Comput. Sci., 21(4):827–859, 2011. doi:10.1017/S0960129511000120.

[2] Evelyne Contejean, Pierre Courtieu, Julien Forest, Olivier Pons, and Xavier Urbain. Auto-
mated certified proofs with cime3. In Manfred Schmidt-Schauß, editor, Proceedings of the
22nd International Conference on Rewriting Techniques and Applications, RTA 2011, May
30 - June 1, 2011, Novi Sad, Serbia, volume 10 of LIPIcs, pages 21–30. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2011. doi:10.4230/LIPIcs.RTA.2011.21.

[3] Carsten Fuhs and Cynthia Kop. Polynomial Interpretations for Higher-Order Rewriting.
In Ashish Tiwari, editor, 23rd International Conference on Rewriting Techniques and
Applications (RTA’12) , RTA 2012, May 28 - June 2, 2012, Nagoya, Japan, volume 15
of LIPIcs, pages 176–192. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012. doi:
10.4230/LIPIcs.RTA.2012.176.

[4] Cynthia Kop. WANDA - a higher order termination tool (system description). In Zena M.
Ariola, editor, 5th International Conference on Formal Structures for Computation and
Deduction, FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual Conference), volume
167 of LIPIcs, pages 36:1–36:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.FSCD.2020.36.

[5] Cynthia Kop. Wanda’s source code repository, 2023. URL: https://github.com/hezzel/
wanda.

[6] Deivid Vale and Niels van der Weide. Onijn documentation, 2022. URL: https:

//deividrvale.github.io/nijn-coq-script-generation/onijn/index.html.

[7] Niels van der Weide and Deivid Vale. nmvdw/nijn: 1.0.0, May 2023. doi:10.5281/zenodo.
7913023.

[8] Niels van der Weide, Deivid Vale, and Cynthia Kop. Certifying higher-order polynomial
interpretations. In Proc. ITP 2023 (to appear), 2023. URL: https://doi.org/10.48550/
arXiv.2302.11892.

https://doi.org/10.1017/S0960129511000120
https://doi.org/10.4230/LIPIcs.RTA.2011.21
https://doi.org/10.4230/LIPIcs.RTA.2012.176
https://doi.org/10.4230/LIPIcs.RTA.2012.176
https://doi.org/10.4230/LIPIcs.FSCD.2020.36
https://github.com/hezzel/wanda
https://github.com/hezzel/wanda
https://deividrvale.github.io/nijn-coq-script-generation/onijn/index.html
https://deividrvale.github.io/nijn-coq-script-generation/onijn/index.html
https://doi.org/10.5281/zenodo.7913023
https://doi.org/10.5281/zenodo.7913023
https://doi.org/10.48550/arXiv.2302.11892
https://doi.org/10.48550/arXiv.2302.11892

	Introduction
	Encoding TRSs in Nijn
	Practical Aspects of Nijn/ONijn Certification
	Proof traces for polynomial interpretation
	Verifying Wanda's Polynomial Interpretations

	Conclusion and Future Plans

